选自medium

机器之心编译

机器之心编辑部

那些被遗忘的竞赛项目代码、权重可能也是一笔宝藏。

很多人可能参加过许多比赛,做过许多项目,但比赛或项目结束之后,曾经写过的代码、用过的模型就被丢到了一边,甚至不久就被删掉。

这种情况并不只存在于比赛中,在学术领域同样存在。当学生训练完模型、写完论文并被学术会议接收后,该模型的 pipeline 就会被抛弃,训练数据也随之被删除。这是不是有点太可惜了?

长期参加 Kaggle 比赛的 Vladimir Iglovikov 在自己的博客中指出了这个问题,并提出了一些重新利用这些资源的建议。

Vladimir Iglovikov 是一位 Kaggle Grandmaster,曾在 Kaggle 全球榜单中排名第 19,拿到过 Carvana 图像遮蔽挑战的冠军

st.image

st.write

st.write

with torch.no_grad:

annotations = model.predict_jsons

if not annotations[0]["bbox"]:

st.write

else:

visualized_image = vis_annotations

st.image

步骤 2:添加配置文件

你需要添加以下文件:

setup.sh — 该文件可以直接使用,不需要更改。

Procfile — 你需要使用应用程序修改文件的路径。

步骤 3:添加 requirements.txt 文件

步骤 4:在 herokuapp 上注册

步骤 5:执行以下代码:

heroku login

heroku create

git push heroku master

花 4 小时写一篇技术博客

很多人低估了他们研究的价值。实际上你的文章很可能能够帮助别人,并且能够为自己的职业生涯提供更多的机会。

如果要写机器学习方面的文章,我建议你包含以下内容:

研究问题是什么?

你是如何解决这个问题的?

示例如下:

项目:https://www.kaggle.com/c/sp-society-camera-model-identification

博客:http://ternaus.blog/machine_learning/2018/12/05/Forensic-Deep-Learning-Kaggle-Camera-Model-Identification-Challenge.html

花时间写篇论文,描述你在这场机器学习竞赛中的解决方案

即使你的论文中没有重大突破,它也会被发表并帮到别人。撰写学术论文也是一项技能。你现在可能还不具备这种技能,但你可以与擅长学术写作的人合作。

下面是我的 Google Scholar 引用情况,这几年引用量的猛增都得益于我写的那些总结机器学习竞赛的论文。




当然,你的论文也包含在一个大包里,这个包里还有:

GitHub 存储库,里面有整洁的代码和良好的 readme 文件。

非机器学习人员能够使用的库。

允许在浏览器中用你的模型进行快速实验的 Colab notebook。

吸引非技术受众的 WebApp。

用人类语言讲故事的博客文章。

有了这些之后,它就不再只是一篇论文,而是一种综合性的策略,可以显示你对该项目的所有权,还能帮助你与他人进行沟通。这两者对于你的职业生涯都是至关重要的。

原文链接:https://medium.com/kaggle-blog/i-trained-a-model-what-is-next-d1ba1c560e26

如何根据任务需求搭配恰当类型的数据库?

在AWS推出的白皮书《进入专用数据库时代》中,介绍了8种数据库类型:关系、键值、文档、内存中、关系图、时间序列、分类账、领域宽列,并逐一分析了每种类型的优势、挑战与主要使用案例。

1.《kaggle比赛 竞赛比完,代码、模型怎么处理?Kaggle大神:别删,这都是宝藏》援引自互联网,旨在传递更多网络信息知识,仅代表作者本人观点,与本网站无关,侵删请联系页脚下方联系方式。

2.《kaggle比赛 竞赛比完,代码、模型怎么处理?Kaggle大神:别删,这都是宝藏》仅供读者参考,本网站未对该内容进行证实,对其原创性、真实性、完整性、及时性不作任何保证。

3.文章转载时请保留本站内容来源地址,https://www.lu-xu.com/guonei/351491.html