导数是函数的局部性质。接下来给分享三角函数及反三角函数的求导公式,一起看一下具体内容。
三角函数的导数公式(sinx)'=cosx
(cosx)'=-sinx
(tanx)'=sec²x
(cotx)'=-csc²x
(secx)' =tanx·secx
(cscx)' =-cotx·cscx
反三角函数的求导公式反正弦函数的求导:(arcsinx)'=1/√(1-x^2)
反余弦函数的求导:(arccosx)'=-1/√(1-x^2)
反正切函数的求导:(arctanx)'=1/(1+x^2)
反余切函数的求导:(arccotx)'=-1/(1+x^2)
导数与函数的单调性(1)若导数大于零,则单调递增;若导数小于零,则单调递减;导数等于零为函数驻点,不一定为极值点。需代入驻点左右两边的数值求导数正负判断单调性。
(2)若已知函数为递增函数,则导数大于等于零;若已知函数为递减函数,则导数小于等于零。
三角函数的万能公式sin(a)=[2tan(a/2)]/[1+tan2(a/2)]
cos(a)=[1-tan2(a/2)]/[1+tan2(a/2)]
tan(a)=[2tan(a/2)]/[1-tan2(a/2)]
1.《三角函数的导数 三角函数求导公式是什么》援引自互联网,旨在传递更多网络信息知识,仅代表作者本人观点,与本网站无关,侵删请联系页脚下方联系方式。
2.《三角函数的导数 三角函数求导公式是什么》仅供读者参考,本网站未对该内容进行证实,对其原创性、真实性、完整性、及时性不作任何保证。
3.文章转载时请保留本站内容来源地址,https://www.lu-xu.com/jiaoyu/343038.html