三角变换公式其中包括倍角公式,和差化积,万能公式等。下面和小编一起了解一下吧,供大家参考。

三角变换公式

角和与差的三角函数:

cos(α+β)=cosα·cosβ-sinα·sinβ

cos(α-β)=cosα·cosβ+sinα·sinβ

sin(α+β)=sinα·cosβ+cosα·sinβ

sin(α-β)=sinα·cosβ-cosα·sinβ

tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)

tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)

二倍角公式:

sin(2α)=2sinα·cosα

cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)

tan(2α)=2tanα/[1-tan^2(α)]

三倍角公式:

sin3α=3sinα-4sin^3(α)

cos3α=4cos^3(α)-3cosα

半角公式:

sin^2(α/2)=(1-cosα)/2

cos^2(α/2)=(1+cosα)/2

tan^2(α/2)=(1-cosα)/(1+cosα)

tan(α/2)=sinα/(1+cosα)=(1-cosα)/sinα

万能公式:

半角的正弦、余弦和正切公式(降幂扩角公式)

sinα=2tan(α/2)/[1+tan^2(α/2)]

cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]

tanα=2tan(α/2)/[1-tan^2(α/2)]

积化和差公式:

sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]

cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]

cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]

sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)

和差化积公式:

sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]

sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]

cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]

cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]

基础三角恒等式

sin²α+cos²α=1

1+tan²α=sec²α

1+cot²α=csc²α

sinα/cosα=tanα

secα/cscα=tanα

cosα/sinα=cotα

恒等变形公式

tan(a+π/4)=(tana+1)/(1-tana)

tan(a-π/4)=(tana-1)/(1+tana)

asinx+bcosx=[√(a²+b²)]{[a/√(a²+b²)]sinx+[b/√(a²+b²)]cosx}=[√(a²+b²)]sin(x+y)【辅助角公式,其中tany=b/a,或者说siny=b/[√(a²+b²)],cosy=a/[√(a²+b²)]】

1.《三角变换 三角变换所有公式》援引自互联网,旨在传递更多网络信息知识,仅代表作者本人观点,与本网站无关,侵删请联系页脚下方联系方式。

2.《三角变换 三角变换所有公式》仅供读者参考,本网站未对该内容进行证实,对其原创性、真实性、完整性、及时性不作任何保证。

3.文章转载时请保留本站内容来源地址,https://www.lu-xu.com/jiaoyu/347301.html