高考数学最无耻的变态得分法有很多,这些方法都有一些根据,但并不是说是万能的,因为如果屡试不爽的话,那学习数学还有什么意义?所以以下方法仅供大家紧急时使用,不能当做做题的法宝。
之类的先边化角然后把第一题算的比如角A等于 60°,直接假设B和C都等于60°带入求解。省时省力!
4.空间几何证明过程中有一步实在想不出把没用过的条件直接写上然后得出想不出的那个结论即可。如果第一题真心不会做直接写结论成立则第二题可以直接用!用常规法的同学建议先随便建立个空间坐标系,做错了还有2分可以得!
5.立体几何中第二问叫你求余弦值啥的一般都用坐标法!如果求角度则常规法简单!
6.高考选择题中求条件啥的充要和既不充分也不必要这两个选项可以直接排除!考到概率超小;
7.选择题中考线面关系的可以先从D项看起前面都是来浪费你时间的;
8.选择题中求取值范围的直接观察答案从每个选项中取与其他选项不同的特殊点带入能成立的就是答案;
9.线性规划题目直接求交点带入比较大小即可;
点满足直线方程。理科还有随机变量分布列问题,注意列表时把可能取到的所有值都列出,别少了,然后分别算概率,最后检查所有概率和是否是1,不是1说明要不你概率算错了,要不随机变量数少了。
15.第四题是函数题,第一步别忘了先看下定义域,一般都得求导,求单调区间时注意与定义域取交。看看题型,将题型转化一下,转化到你学过的内容(利用导数判断单调性(含参数时要利用分类讨论思想,一般求导完通分完分子是二次函数的比较多,讨论开口a=0,a>0,a<0和后两种情况下△≥0,△<0)、求极值(根据单调区间列表或画图像简图)、求最值(所有的极值点与两端点值比较)等),典型的有恒成立问题、存在问题(注意与恒成立问题的区别),不管是什么都要求函数的最大值或最小值,注意方法以及比较定义域端点值,注意函数图象(数形结合思想:求方程的根或解、曲线的交点个数)的运用。证明有关的问题可以利用证明的各种方法(综合法、分析法、反证法、理科的数学归纳法)。多问的时候注意后面的问题一般需要用到前面小问的结论。抽象的证明问题别光用眼睛在那看,得设出里面的未知量,通过设而不求思想证明问题;
16.第五题是圆锥曲线题,第一问求曲线方程,注意方法(定义法、待定系数法、直接求轨迹法、反求法、参数方程法等等)。一定检查下第一问算的数对不,要不如果算错了第二问做出来了也白算了。第二问有直线与圆锥曲线相交时,记住我说的“联立完事用联立”,第一步联立,根据韦达定理得出两根之和、两根之差、因一般都是交于两点,注意验证△>0,设直线时注意讨论斜率是否存在。
第二步也是最关键的就是用联立,关键是怎么用联立,即如何将题里的条件转化成你刚才联立完的和 ,然后将结果代入即可,通常涉及的题型有弦长问题(代入弦长公式)、定比分点问题(根据比例关系建立三点坐标之间的一个关系式(横坐标或纵坐标),再根据根与系数的关系建立圆锥曲线上的两点坐标的两个关系式,从这三个关系式入手解决)、点对称问题(利用两点关于直线对称的两个条件,即这两点的连线与对称轴垂直和这两点的中点在对称轴上)、定点问题(直线y=kx+b过定点即找出k与b的关系,如b=5k+7。
然后将b代入到直线方程y=kx+5k+7=k(x+5)+7即可找出定点(-5,7))、定值问题(基本思想是函数思想,将要证明或要求解的量表示为某个合适变量(斜率、截距或坐标)的函数,通过适当化简,消去变量即得定值。)、最值或范围问题(基本思想还是函数思想,将要求解的量表示为某个合适变量(斜率、截距或坐标)的函数,利用函数求值域的方法(首先要求变量的范围即定义域—别忘了△>0,然后运用求值域的各种方法—直接法、换元法、图像法、导数法、均值不等式法(注意验证“=”)等)求出最值(最大、最小),即范围也求出来了)。抽象的证明问题别光用眼睛在那看,得设出里面的未知量,通过设而不求思想证明问题。
做选择题时注意各种方法的运用,比较简单的自己会的题正常做就可以了,遇到比较复杂的题时,看看能否用做选择题的技巧进行求解(主要有排除法、特殊值代入法、特例求解法、选项一一带入验证法、数形结合法、逻辑推理验证法等等),一般可以综合运用各种方法,达到快速做出选择的效果。填空题也是,比较简单的会的就正常做,复杂的题如果答案是一个确定的值时,看能否用特殊值代入法以及特例求解法。选择填空题的答题时间要自己掌握好,遇到不会的先放下往后答,我们的目标是把卷子上所有会的题都答上了、都答对了,审题要仔细(一个字一个字读题),计算要准确(一步一步计算),千万不要有马虎的地方。
1.《万能弦长公式 高考数学最无耻的变态得分法有哪些》援引自互联网,旨在传递更多网络信息知识,仅代表作者本人观点,与本网站无关,侵删请联系页脚下方联系方式。
2.《万能弦长公式 高考数学最无耻的变态得分法有哪些》仅供读者参考,本网站未对该内容进行证实,对其原创性、真实性、完整性、及时性不作任何保证。
3.文章转载时请保留本站内容来源地址,https://www.lu-xu.com/jiaoyu/348136.html