高二数学在整个数学中占有非常重要的地位,既是高二又是整个高中阶段的重难点,所以要保持良好的学习心态和正确的学习方法。下面就是小编给大家带来的高二数学知识点,希望大能帮助到大家!

高二数学知识点5

  圆锥曲线方程:

  1、椭圆:①方程(a>b>0)注意还有一个;②定义:|PF1|+|PF2|=2a>2c;③e=④长轴长为2a,短轴长为2b,焦距为2c;a2=b2+c2;

  2、双曲线:①方程(a,b>0)注意还有一个;②定义:||PF1|-|PF2||=2a<2c;③e=;④实轴长为2a,虚轴长为2b,焦距为2c;渐进线或c2=a2+b2

  3、抛物线:①方程y2=2px注意还有三个,能区别开口方向;②定义:|PF|=d焦点F(,0),准线x=-;③焦半径;焦点弦=x1+x2+p;

  4、直线被圆锥曲线截得的弦长公式:

  5、注意解析几何与向量结合问题:1、,.(1);(2).

  2、数量积的定义:已知两个非零向量a和b,它们的夹角为θ,则数量|a||b|cosθ叫做a与b的数量积,记作a·b,即

  3、模的计算:|a|=.算模可以先算向量的平方

  4、向量的运算过程中完全平方公式等照样适用:

  高二数学知识点2

  空间中直线与直线之间的位置关系

  1空间的两条直线有如下三种关系:

  共面直线

  相交直线:同一平面内,有且只有一个公共点;

  平行直线:同一平面内,没有公共点;

  异面直线:不同在任何一个平面内,没有公共点。

  2公理4:平行于同一条直线的两条直线互相平行。

  符号表示为:设a、b、c是三条直线

  a∥b

  c∥b

  强调:公理4实质上是说平行具有传递性,在平面、空间这个性质都适用。

  公理4作用:判断空间两条直线平行的依据。

  3等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补

  4注意点:

  ①a'与b'所成的角的大小只由a、b的相互位置来确定,与O的选择无关,为了简便,点O一般取在两直线中的一条上;

  ②两条异面直线所成的角θ∈(0,);

  ③当两条异面直线所成的角是直角时,我们就说这两条异面直线互相垂直,记作a⊥b;

  ④两条直线互相垂直,有共面垂直与异面垂直两种情形;

  ⑤计算中,通常把两条异面直线所成的角转化为两条相交直线所成的角。

  高二数学知识点3

  立体几何初步

  1、柱、锥、台、球的结构特征

  (1)棱柱:

  几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。

  (2)棱锥

  几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。

  (3)棱台:

  几何特征:①上下底面是相似的平行多边形②侧面是梯形③侧棱交于原棱锥的顶点

  (4)圆柱:定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成

  几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。

  (5)圆锥:定义:以直角三角形的一条直角边为旋转轴,旋转一周所成

  几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。

  (6)圆台:定义:以直角梯形的垂直与底边的腰为旋转轴,旋转一周所成

  几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。

  (7)球体:定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体

  几何特征:①球的截面是圆;②球面上任意一点到球心的距离等于半径。

  高二数学知识点4

  (1)必然事件:在条件S下,一定会发生的事件,叫相对于条件S的必然事件;

  (2)不可能事件:在条件S下,一定不会发生的事件,叫相对于条件S的不可能事件;

  (3)确定事件:必然事件和不可能事件统称为相对于条件S的确定事件;

  (4)随机事件:在条件S下可能发生也可能不发生的事件,叫相对于条件S的随机事件;

  (5)频数与频率:在相同的条件S下重复n次试验,观察某一事件A是否出现,称n次试验中事件A出现的次数nA为事件A出现的频数;称事件A出现的比例fn(A)=nnA为事件A出现的概率:对于给定的随机事件A,如果随着试验次数的增加,事件A发生的频率fn(A)稳定在某个常数上,把这个常数记作P(A),称为事件A的概率。

  (6)频率与概率的区别与联系:随机事件的频率,指此事件发生的次数nA与试验总次数n的比值nnA,它具有一定的稳定性,总在某个常数附近摆动,且随着试验次数的不断增多,这种摆动幅度越来越小。我们把这个常数叫做随机事件的概率,概率从数量上反映了随机事件发生的可能性的大小。频率在大量重复试验的前提下可以近似地作为这个事件的概率。

  高二数学知识点5

  1.求导法则:

  (c)/=0这里c是常数。即常数的导数值为0。

  (xn)/=nxn-1特别地:(x)/=1(x-1)/=()/=-x-2(f(x)±g(x))/=f/(x)±g/(x)(k?f(x))/=k?f/(x)

  2.导数的几何物理意义:

  k=f/(x0)表示过曲线y=f(x)上的点P(x0,f(x0))的切线的斜率。

  V=s/(t)表示即时速度。a=v/(t)表示加速度。

  3.导数的应用:

  ①求切线的斜率。

  ②导数与函数的单调性的关系

  已知(1)分析的定义域;(2)求导数(3)解不等式,解集在定义域内的部分为增区间(4)解不等式,解集在定义域内的部分为减区间。

  我们在应用导数判断函数的单调性时一定要搞清以下三个关系,才能准确无误地判断函数的单调性。以下以增函数为例作简单的分析,前提条件都是函数在某个区间内可导。

  ③求极值、求最值。

  注意:极值≠最值。函数f(x)在区间[a,b]上的值为极大值和f(a)、f(b)中的一个。最小值为极小值和f(a)、f(b)中最小的一个。

  f/(x0)=0不能得到当x=x0时,函数有极值。

  但是,当x=x0时,函数有极值f/(x0)=0

  判断极值,还需结合函数的单调性说明。

  4.导数的常规问题:

  (1)刻画函数(比初等方法精确细微);

  (2)同几何中切线联系(导数方法可用于研究平面曲线的切线);

  (3)应用问题(初等方法往往技巧性要求较高,而导数方法显得简便)等关于次多项式的导数问题属于较难类型。

  2.关于函数特征,最值问题较多,所以有必要专项讨论,导数法求最值要比初等方法快捷简便。

  3.导数与解析几何或函数图象的混合问题是一种重要类型,也是高考中考察综合能力的一个方向,应引起注意。

最新高二数学知识点总结归纳分享五篇

1.《解析几何知识点总结 最新高二数学知识点总结归纳分享五篇》援引自互联网,旨在传递更多网络信息知识,仅代表作者本人观点,与本网站无关,侵删请联系页脚下方联系方式。

2.《解析几何知识点总结 最新高二数学知识点总结归纳分享五篇》仅供读者参考,本网站未对该内容进行证实,对其原创性、真实性、完整性、及时性不作任何保证。

3.文章转载时请保留本站内容来源地址,https://www.lu-xu.com/jiaoyu/349082.html