在高考中数学占的分数比重是非常的大的,很多的高三考生都是非常的关心2018四川高考理科数学大纲,小编整理了相关信息,希望会对大家有所帮助!

(1)了解基本不等式的证明过程.

(2)会用基本不等式解决简单的最大(小)值问题.

(十四) 常用逻辑用语

1. 命题及其关系

(1)理解命题的概念.

(2)了解“若p,则q”形式的命题及其逆命题、否命题与逆否命题,会分析四种命题的相互关系.

(3)理解必要条件、充分条件与充要条件的意义.

2. 简单的逻辑联结词

了解逻辑联结词“或”“且”“非”的含义.

3. 全称量词与存在量词

(1)理解全称量词与存在量词的意义.

(2)能正确地对含有一个量词的命题进行否定.

(十五) 圆锥曲线与方程

1. 圆锥曲线

(1)了解圆锥曲线的实际背景,了解圆锥曲线在刻画现实世界和解决实际问题中的作用.

(2)掌握椭圆、抛物线的定义、几何图形、标准方程及简单性质.

(3)了解双曲线的定义、几何图形和标准方程,知道它的简单几何性质.

(4)了解圆锥曲线的简单应用.

(5)理解数形结合的思想.

2. 曲线与方程

了解方程的曲线与曲线的方程的对应关系.

(十六) 空间向量与立体几何

1. 空间向量及其运算

(1)了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的正交分解及其坐标表示.

(2)掌握空间向量的线性运算及其坐标表示.

(3)掌握空间向量的数量积及其坐标表示,能运用向量的数量积判断向量的共线与垂直.

2. 空间向量的应用

(1)理解直线的方向向量与平面的法向量.

(2)能用向量语言表述直线与直线、直线与平面、平面与平面的垂直、平行关系.

(3)能用向量方法证明有关直线和平面位置关系的一些定理(包括三垂线定理).

(4)能用向量方法解决直线与直线、直线与平面、平面与平面的夹角的计算问题,了解向量方法在研究立体几何问题中的应用.

(十七) 导数及其应用

1. 导数概念及其几何意义

(1)了解导数概念的实际背景.

(2)理解导数的几何意义.

2. 导数的运算

(1)能根据导数定义求函数 y=C (C为常数),

(2)能利用下面给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数,能求简单的复合函数(仅限于形如f(ax+b)的复合函数)的导数.

常见基本初等函数的导数公式:

常用的导数运算法则:

3. 导数在研究函数中的应用

(1)了解函数单调性和导数的关系;能利用导数研究函数的单调性,会求函数的单调区间(其中多项式函数一般不超过三次).

(2)了解函数在某点取得极值的必要条件和充分条件;会用导数求函数的极大值、极小值(其中多项式函数一般不超过三次);会求闭区间上函数的最大值、最小值(其中多项式函数一般不超过三次).

4. 生活中的优化问题

会利用导数解决某些实际问题.

5. 定积分与微积分基本定理

(1)了解定积分的实际背景,了解定积分的基本思想,了解定积分的概念.

(2)了解微积分基本定理的含义.

(十八) 推理与证明

1. 合情推理与演绎推理

(1)了解合情推理的含义,能利用归纳和类比等进行简单的推理,了解合情推理在数学发现中的作用.

(2)了解演绎推理的重要性,掌握演绎推理的基本模式,并能运用它们进行一些简单推理.

(3)了解合情推理和演绎推理之间的联系和差异.

2. 直接证明与间接证明

(1)了解直接证明的两种基本方法——分析法和综合法;了解分析法和综合法的思考过程、特点.

(2)了解间接证明的一种基本方法——反证法;了解反证法的思考过程、特点.

3. 数学归纳法

了解数学归纳法的原理,能用数学归纳法证明一些简单的数学命题.

(十九) 数系的扩充与复数的引入

1. 复数的概念

(1)理解复数的基本概念.

(2)理解复数相等的充要条件.

(3)了解复数的代数表示法及其几何意义.

2. 复数的四则运算

(1)会进行复数代数形式的四则运算.

(2)了解复数代数形式的加、减运算的几何意义.

(二十) 计数原理

1. 分类加法计数原理、分步乘法计数原理

(1)理解分类加法计数原理和分步乘法计数原理.

(2)会用分类加法计数原理或分步乘法计数原理分析和解决一些简单的实际问题.

2. 排列与组合

(1)理解排列、组合的概念.

(2)能利用计数原理推导排列数公式、组合数公式.

(3)能解决简单的实际问题.

3. 二项式定理

(1)能用计数原理证明二项式定理.

(2)会用二项式定理解决与二项展开式有关的简单问题.

(二十一) 概率与统计

1. 概率

(1)理解取有限个值的离散型随机变量及其分布列的概念,了解分布列对于刻画随机现象的重要性.

(2)理解超几何分布及其导出过程,并能进行简单的应用.

(3)了解条件概率和两个事件相互独立的概念,理解次独立重复试验的模型及二项分布,并能解决一些简单的实际问题.

(4)理解取有限个值的离散型随机变量均值、方差的概念,能计算简单离散型随机变量的均值、方差,并能解决一些实际问题.

(5)利用实际问题的直方图,了解正态分布曲线的特点及曲线所表示的意义.

2. 统计案例

了解下列一些常见的统计方法,并能应用这些方法解决一些实际问题.

(1)独立性检验

了解独立性检验(只要求2×2列联表)的基本思想、方法及其简单应用.

(2)回归分析

了解回归分析的基本思想、方法及其简单应用.

选考内容

(一) 坐标系与参数方程

1. 坐标系

(1)理解坐标系的作用.

(2)了解在平面直角坐标系伸缩变换作用下平面图形的变化情况.

(3)能在极坐标系中用极坐标表示点的位置,理解在极坐标系和平面直角坐标系中表示点的位置的区别,能进行极坐标和直角坐标的互化.

(4)能在极坐标系中给出简单图形的方程.通过比较这些图形在极坐标系和平面直角坐标系中的方程,理解用方程表示平面图形时选择适当坐标系的意义.

(5)了解柱坐标系、球坐标系中表示空间中点的位置的方法,并与空间直角坐标系中表示点的位置的方法相比较,了解它们的区别.

2. 参数方程

(1)了解参数方程,了解参数的意义.

(2)能选择适当的参数写出直线、圆和圆锥曲线的参数方程.

(3)了解平摆线、渐开线的生成过程,并能推导出它们的参数方程.

(4)了解其他摆线的生成过程,了解摆线在实际中的应用,了解摆线在表示行星运动轨道中的作用.

(二) 不等式选讲

理解绝对值的几何意义,并能利用含绝对值不等式的几何意义证明以下不等式:

(3) 会利用绝对值的几何意义求解以下类型的不等式:

2. 了解下列柯西不等式的几种不同形式,理解它们的几何意义,并会证明.

(1) 柯西不等式的向量形式:

(此不等式通常称为平面三角不等式.)

3. 会用参数配方法讨论柯西不等式的一般情形:

4. 会用向量递归方法讨论排序不等式.

5. 了解数学归纳法的原理及其使用范围,会用数学归纳法证明一些简单问题.

6. 会用数学归纳法证明伯努利不等式:

了解当n为大于1的实数时伯努利不等式也成立.

7. 会用上述不等式证明一些简单问题.能够利用平均值不等式、柯西不等式求一些特定函数的极值.

8. 了解证明不等式的基本方法:比较法、综合法、分析法、反证法、放缩法.

小编推荐:2018高考全国卷考试大纲解读

高中数学必须要突破的门槛

一、预习

预习就是自学,一般是指在老师讲课以前,自己先独立的阅读新课内容,做到初步理解,做好上课的准备,我们很多同学在学习过程中也经常预习,但只是单纯的看一下课本做一下例题,会的过去了,不会的等待老师讲解,基本也很难发现或者找到问题,所以预习或不预习最后结果其实差异并不是很大,那么预习到底该怎么做呢?

二、上课

不言而喻,上课也应是考生学好功课、掌握知识、发展能力的决定性一环,有了上一个环节的铺垫,上课的目标会清晰很多。

首先上课时要集中精力听讲,上课铃一响,就应立即进入积极的学习状态,有意识地排除分散注意力的各种因素。

听课时注意老师叙述问题的逻辑性即问题是怎样提出来的,以及分析问题和解决问题的方法步骤,核心是分析问题的思路,注意上课不要一味的记笔记或者计算,对于不懂的问题要先记下来,接着往下听,课后再去钻研或向老师请教。

三、作业

作业不仅可以及时巩固当天所学知识,加深对知识的理解,更重要的是把学过的知识加以运用,以形成技能技巧.

首先作业要独立完成。对于作业中出现的错误,要认真改正.注意

书写工整,步骤简明有条理,切忌涂改过多,很多习惯要在平时养成

其次作业题目一般都是老师有目的选择的,都会有一定的目的和代表性,定期将作业分门别类进行整理,复习时,可随时拿来参考。

四、复习

复习的主要任务是达到对知识的深入理解和掌握,在理解和掌握过程中提高运用知识的技能技巧,使知识融汇贯通。

1.单节课复习:当天的功课当天复习,并且要同时复习头一天学习和复习过的内容,使新旧知识联系起来。

2.单元复习。在课程进行完一个单元以后,要把全单元的知识要点进行一次全面复习,重点领会各知识要点之间的联系,使知识系统化和结构化。

1.《四川高考数学 2018四川高考理科数学大纲【最新公布】》援引自互联网,旨在传递更多网络信息知识,仅代表作者本人观点,与本网站无关,侵删请联系页脚下方联系方式。

2.《四川高考数学 2018四川高考理科数学大纲【最新公布】》仅供读者参考,本网站未对该内容进行证实,对其原创性、真实性、完整性、及时性不作任何保证。

3.文章转载时请保留本站内容来源地址,https://www.lu-xu.com/jiaoyu/403318.html