题目:
高中三角函数习题比较大小:sin(cosx)和cos(sinx) 其中x为任意角注:请说明详细解题过程,谢谢
解答:
360° | 270°| 0°| 15° | 30° | 37°| 45° sin | 0 | -1 | 0 |(√6-√2)/4 | 1/2 | 3/5 |√2/2 cos | 1 | 0 | 1 |(√6+√2)/4 |√3/2 | 4/5 |√2/2 tan | 0 | 无值 | 0 | 2-√3 |√3/3 | 3/4 | 1 ______________________________________________________________________ | 53° | 60° | 75° | 90° | 120° | 135° sin | 4/5 |√3/2 ||(√6+√2)/4 | 1 | √3/2 | √2/2 cos | 3/5 | 1/2 | (√6-√2)/4 | 0 | -1/2 |-√2/2 tan | 4/3 | √3 | 2+√3 | 无值 | -√3 | -1 ______________________________________________________________________ |180° sin |0 cos |-1 tan |0 最重要的是要记公式了.公式虽然多,但掌握了其中的规律,就不难得记了 倒数关系 tanα ·cotα=1 sinα ·cscα=1 cosα ·secα=1 商数关系 tanα=sinα/cosα cotα=cosα/sinα 平方关系 sinα²+cosα²=1 1+tanα²=secα² 1+cotα=cscα² 以下关系,函数名不变,符号看象限 sin(2kπ+α)=sinα cos(2kπ+α)=cosα tan(2kπ+α)=tanα cot(2kπ+α)=cotα sin(π+α)=-sinα cos(π+α)=-cosα tan(π+α)=tanα cot(π+α)=cotα sin(π-α)=sinα cos(π-α)=-cosα tan(π-α)=-tanα cot(π-α)=-cotα sin(2π-α)=-sinα cos(2π-α)=cosα tan(2π-α)=-tanα cot(2π-α)=-cotα 以下关系,奇变偶不变,符号看象限 sin(90°-α)=cosα cos(90°-α)=sinα tan(90°-α)=cotα cot(90°-α)=tanα sin(90°+α)=cosα cos(90°+α)=sinα tan(90°+α)=-cotα cot(90°+α)=-tanα sin(270°-α)=-cosα cos(270°-α)=-sinα tan(270°-α)=cotα cot(270°-α)=tanα sin(270°+α)=-cosα cos(270°+α)=sinα tan(270°+α)=-cotα cot(270°+α)=-tanα 积化和差公式 sinα ·cosβ=(1/2)*[sin(α+β)+sin(α-β)] cosα ·sinβ=(1/2)*[sin(α+β)-sin(α-β)] cosα ·cosβ=(1/2)*[cos(α+β)+cos(α-β)] sinα ·sinβ=(1/2)*[cos(α+β)-cos(α-β)] 和差化积公式 sinα+sinβ=2*[sin(α+β)/2]*[cos(α-β)/2] sinα-sinβ=2*[cos(α+β)/2]*[sin(α-β)/2] cosα+cosβ=2*[cos(α+β)/2]*[cos(α-β)/2] cosα-cosβ=-22*[sin(α+β)/2]*[sin(α-β)/2] 三倍角公式 sin3α=3sinα-4sinα³ cos3α=4cosα³-3cosα 两角和与差的三角函数公式 sin(α+β)=sinαcosβ+cosαsinβ sin(α-β)=sinαcosβ-cosαsinβ cos(α+β)=cosαcosβ-sinαsinβ cos(α-β)=cosαcosβ+sinαsinβ tan(α+β)==(tanα+tanβ )/(1-tanα ·tanβ) tan(α-β)=(tanα-tanβ )/(1+tanα ·tanβ) 好了,就是这么多了,在此祝你学习进步(开始那些公式对的整整齐齐的,好不容易打出来的,提交答案就变成那样了,我用|号将他们分开,每个|对应的就是上面的值)
1.《sinx 高中三角函数习题比较大小:sin和cos(sinx) 其中x为任意角注:请说明详细解题过程,谢谢》援引自互联网,旨在传递更多网络信息知识,仅代表作者本人观点,与本网站无关,侵删请联系页脚下方联系方式。
2.《sinx 高中三角函数习题比较大小:sin和cos(sinx) 其中x为任意角注:请说明详细解题过程,谢谢》仅供读者参考,本网站未对该内容进行证实,对其原创性、真实性、完整性、及时性不作任何保证。
3.文章转载时请保留本站内容来源地址,https://www.lu-xu.com/jiaoyu/427778.html