抛物线对称轴公式:x=-b/2a。垂直于准线并通过焦点的线(即通过中间分解抛物线的线)被称为“对称轴”。
y=ax²+bx+c
=a(x²+b/ax)+c
=a(x²+b/ax+b²/4a²)+c-b²/4a
=a(x+b/2a)²-(-4ac+b²)/(4a)
顶点(-b/2a,(4ac-b²)/4a)
对称轴x=-b/2a
二次函数图象
在平面直角坐标系中作出二次函数y=ax1+bx+c的图像,可以看出,在没有特定定义域的二次函数图像是一条永无止境的抛物线。如果所画图形准确无误,那么二次函数图像将是由y=ax²平移得到的。
二次函数图像是轴对称图形,对称轴为直线x=-b/2a。
对称轴与二次函数图像唯一的交点为二次函数图象的顶点P。
特别地,当b=0时,二次函数图像的对称轴是y轴(即直线x=0),是顶点的横坐标(即x=-b/2a)。
二次函数图像有一个顶点P,坐标为P(h,k)。
当h=0时,P在y轴上;当k=0时,P在x轴上。即可表示为顶点式y=a(x-h)1+k(a≠0)
h=-b/2a,k=(4ac-b²)/4a。
二次项系数a决定二次函数图像的开口方向和大小。
当a>0时,二次函数图象向上开口;当a<0时,抛物线向下开口。
|a|越大,则二次函数图像的开口越小。
一次项系数b和二次项系数a共同决定对称轴的位置。
当a>0,与b同号时(即ab>0),对称轴在y轴左;因为对称轴在左边则对称轴小于0,也就是-b/2a<0,所以b/2a要大于0,所以a、b要同号。
当a>0,与b异号时(即ab<0),对称轴在y轴右。因为对称轴在右边则对称轴要大于0,也就是-b/2a>0,所以b/2a要小于0,所以a、b要异号。
可简单记忆为左同右异,即当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右。
事实上,b有其自身的几何意义:二次函数图象与y轴的交点处的该二次函数图像切线的函数解析式(一次函数)的斜率k的值。可通过对二次函数求导得到。
1.《二次函数的对称轴公式 抛物线对称轴公式》援引自互联网,旨在传递更多网络信息知识,仅代表作者本人观点,与本网站无关,侵删请联系页脚下方联系方式。
2.《二次函数的对称轴公式 抛物线对称轴公式》仅供读者参考,本网站未对该内容进行证实,对其原创性、真实性、完整性、及时性不作任何保证。
3.文章转载时请保留本站内容来源地址,https://www.lu-xu.com/jiaoyu/436493.html