一.选择题(共8小题)1.如图,在△ABC中,AB=AC,点D、E在BC上,连接AD、AE,如果只添加一个条件使∠DAB=∠EAC,则添加的条件不能为( )A. BD=CE B. AD=AE C. DA=DE D. BE=CD 2.等腰三角形的一个角是80°,则它顶角的度数是( ) A. 80° B. 80°或20° C. 80°或50° D. 20°3.已知实数x,y满足 ,则以x,y的值为两边长的等腰三角形的周长是( )A. 20或16 B. 20 C. 16 D. 以上答案均不对 4.如图,在△ABC中,AB=AC,∠A=40°,BD为∠ABC的平分线,则∠BDC的度数是( )A. 60° B. 70° C. 75° D. 80° 5.已知等腰三角形 的两边长分别是3和5,则该三角形的周长是( )A. 8 B. 9 C. 10或12 D. 11或136.如图,等腰△ABC中,AB=AC,∠A=20°.线段AB的垂直平分线交AB于D,交AC于E,连接BE,则∠CBE等于( )A. 80° B. 70° C. 60° D. 50°7.在等腰△ABC中,AB=AC,中线BD将这个三角形的周长分为15和12两个部分,则这个等腰三角形的底边长为( )A. 7 B. 11 C. 7或11 D. 7或108.等腰三角形一腰上的高与另一腰的夹角为30°,则顶角的度数为( )A. 60° B. 120° C. 60°或150° D. 60°或120° 二.填空题(共10小题) 9.已知等腰三角形的一个内角为80°,则另两个角的度数是 _________ . 10.如图,已知AB∥CD,AB=AC,∠ABC=68°,则∠ACD= _________ .
第10题 第11题 第12题 第13题11.如图,在△ABC中,AB=AC,△ABC的外角∠DAC=130°,则∠B = _________ °.12.如图,AB∥CD,AE=AF,CE交AB于点F,∠C=110°,则∠A=________°.13.如图,在△ABC中,AB=AC,BC=6,AD⊥BC于D,则BD=_________ . 14.如图,在△ABC中,AB=AD=DC,∠BAD=32°,则∠BAC=_________ °. 15.如图,等腰△ABC中,AB=AC,AD平分∠BAC,点E是线段BC 延长线上一点,连接AE,点C在AE的垂直平分线上,若DE=10cm,则AB+BD= _________ cm.16.如图,在△ABC中,AB=AC,CD平分∠ACB,∠A=36°,则∠BDC的度数为 _________.17.如图,在△ABC中,AB=AC,点D为BC边的中点,∠BAD=20°,则∠C= _________ .18.如图,在△ABC中,AB=AC,∠A=80°,E,F,P分别是AB,AC,BC边上一点,且BE=BP,CP=CF,则∠EPF= _________ 度.三.解答题(共5小题)19.(2005•云南)已知:如图,在等腰△ABC中,AB=AC,O是底边BC上的中点,OD⊥AB于D,OE⊥AC于E.求证:AD=AE.20.(2012•随州)如图,在△ABC中,AB=AC,点D是BC的中点,点E在AD上.求证:(1)△ABD≌△ACD;(2)BE=CE. 21. (2009•河南)如图所示,∠BAC=∠ABD,AC=BD,点O是AD、BC的交点,点E是AB的中点.试判断OE和AB的位置关系,并给出证明. 22.如图,在△ABC中,D、E分别是AC和AB上的点,BD与CE相交于点O,给出下列四个条件:①∠EBO=∠DCO;②∠BEO=∠CDO;③BE=CD;④OB=OC.(1)上述四个条件中,由哪两个条件可以判定AB=AC?(用序号写出所有的情形)(2)选择(1)小题中的一种情形,说明AB=AC. 23.(1)如图,在△ABC中,∠ABC、∠ACB的平分线相交于F,过F作DE∥BC,分别交AB、AC于点D、E.判断DE=DB+EC是否成立?为什么?(2)如图,若点F是∠ABC的平分线和外角∠ACG的平分线的交点,其他条件不变,请猜想线段DE、DB、EC之间有何数量关系?证明你的猜想. 第1课时 等腰三角形的性质一、CBBCDCCD 二、9、50°,50°或80°,20°;10、44;11、65;12、40;13、3;1 4、69;15、10;16、72;17、70;18、50三、19、证明:∵AB=AC,∴∠B=∠C.∵OD⊥AB,OE⊥AC,∴∠ODB=∠OEC=90°.∵O是底边BC上的中点,∴OB=OC,在△ OBD与△OCE中, ∴△OBD≌△OCE( AAS).∴BD=CE.∵AB=AC,∴AB﹣BD=AC﹣CE.即AD=AE.20、证明:(1)∵D是BC的中点,∴BD=CD,在△ABD和△ACD中, ,∴△ABD≌△ACD(SSS); …(4分)(2)由(1)知△ABD≌△ACD,∴∠BAD=∠CAD,即∠BAE=∠CAE,在△ABE和△ACE中, ∴△ABE≌△ACE (SAS),∴BE=CE(全等三角形的对应边相等).(其他正确证法同样给分) …(4分)21、解:OE⊥AB.证明:在△BAC和△ABD中, ,∴△BAC≌△ABD(SAS).∴∠OBA=∠OAB,∴OA=OB.又∵AE=BE,∴OE⊥AB. 答:OE⊥AB.22、(1)答:有①③、①④ 、②③、②④共4种情形.(2)解:选择①④,证明如下:∵OB=OC,∴∠OBC=∠OCB,又∵∠EBO=∠DCO,∴∠EBO+∠OBC=∠DCO+∠OCB,即∠ABC=∠ACB,∴AC=AB.②④理由是:在△BEO和△CDO中∵ ,∴△BEO≌△CDO,∴∠EBO=∠DCO,∵OB=OC,∴∠OBC=∠OCB,∴∠ABC=∠ACB,∴AB=AC,23、解:(1)成立;∵△ABC中BF、CF平分∠ABC、∠ACB,∴∠1=∠2,∠5=∠4.∵DE∥BC,∴∠2=∠3,∠4=∠6.∴∠1=∠3,∠6=∠5.根据在同一个三角形中,等角对等边的性质,可知:BD=DF,EF=CE.∴DE=DF+EF=BD+CE.故成立.(2)∵BF分∠ABC,∴∠DBF=∠FBC.∵DF∥BC,∴∠DFB=∠FBC.∴∠ABF=∠DFB,∴BD=DF.∵CF平分∠ACG,∴∠ACF=∠FCG.∵DF∥BC,∴∠DFC=∠FCG.∴∠ACF=∠DFC,∴CE=EF.∵EF+DE=DF,即DE+EC=BD.
1.《 八年级上册数学等腰三角形的性质定理知识点》援引自互联网,旨在传递更多网络信息知识,仅代表作者本人观点,与本网站无关,侵删请联系页脚下方联系方式。
2.《 八年级上册数学等腰三角形的性质定理知识点》仅供读者参考,本网站未对该内容进行证实,对其原创性、真实性、完整性、及时性不作任何保证。
3.文章转载时请保留本站内容来源地址,https://www.lu-xu.com/jiaoyu/479184.html