题目:
用有限覆盖定理证明连续函数的最值定理
解答:
函数f(x),区间[a,b],f(x)在区间上的上确界为M,下证存在一点h使得f(h)=M反证:如结论不成立,则对任意一点z,都有f(z)
1.《最值定理 用有限覆盖定理证明连续函数的最值定理》援引自互联网,旨在传递更多网络信息知识,仅代表作者本人观点,与本网站无关,侵删请联系页脚下方联系方式。
2.《最值定理 用有限覆盖定理证明连续函数的最值定理》仅供读者参考,本网站未对该内容进行证实,对其原创性、真实性、完整性、及时性不作任何保证。
3.文章转载时请保留本站内容来源地址,https://www.lu-xu.com/jiaoyu/547166.html