一、与实验教材(《义务教育课程标准实验教科书数学五年级》,下同)的主要区别
1.与实验教材相比,修订后的教材不再出现整除的概念,因数和倍数的概念由整数除法算式引出,而不是乘法,这样便于学生感知因数与倍数的本质内涵,领悟这两个概念不是针对整数乘法,而是反映整数除法中余数为0的情况,为后面找一个数的因数和倍数做准备。
2.与实验教材相比,修订后的教材更加明确了因数与倍数的相互依存的关系。
3.与实验教材相比,在学习2、5、3的倍数的特征时,修订后的教材均采用了百数表,这样使学生的探究学习更加开放,有利于提高学生独立学习的能力和发展学生的创造性思维。
4.与实验教材相比,修订后的教材增加了两数之和的奇偶性的探讨,让学生在探究过程中获得数学活动的经验,丰富解决问题的策略。
二、教材例题分析
(一)因数和倍数
例1:因数和倍数的概念
例1教材给出9个除法算式,让学生试着分类;接着出示以“商是整数且没有余数”为分类标准分成两类的一种结果。在此基础上由第一类中的整数除法,引出因数和倍数的概念,并举例说明。
从具体的整数除法等式到抽象的数学概念,再由抽象的概念回到具体,举例说明概念。这样的思维转换过程有利于学生认知概念,切实掌握概念。通过让学生说一说第一类中每个算式,谁是谁的因数,谁是谁的倍数,进一步体会“因数和倍数是互相依存的”。
在例1的最后,教材指出了本单元中的数的研究范围是大于0的自然数。
例2:一个数的因数的求法
例2直接提出问题:“18的因数有哪几个?”引导学生利用因数的概念从小到大依次写出,然后再用集合图表示出一个数的全部因数,为后面用交集图表示两个数的公因数打下基础,并使学生初步体会一个数的因数个数是有限的。
例3:一个数的倍数的求法
例3教材直接提出问题:“2的倍数有哪些?”因为被除数相当于积,所以求2的倍数可将2和任意非零自然数相乘得到。学生在列乘法算式时就会发现这样的算式是列不完的,因此,2的倍数的个数是无限的。接着也用集合图表示出2的倍数,为后面学习交集图表示两个数的公倍数奠定基础。
最后引导学生抽象概括出一个数的最小、最大因数和最小倍数分别是什么,总结出一个数的因数、倍数的个数的结论,在其中渗透从个别到全体、从具体到一般的抽象归纳思想方法。
(二)2、5、3的倍数的特征
例1:2、5的倍数的特征
例1教材采用了百数表,让学生画圈、画框、观察、发现、总结。比如,将5的倍数圈起来,学生马上就能发现5的倍数都集中在两列上,特征也非常明显,一列个位都是5,另一列个位都是0,因此学生能顺利的归纳出5的倍数的特征。同样道理,将2的倍数框起来,也能够显而易见地发现其特征。
为了便于学生总结自己的发现,教材以学生对话的形式,给出5、2倍数的特征的不完整描述,让学生把特征填写完整。在总结了2的倍数的特征的基础上,教材引出了偶数、奇数的概念。完成了做一做,学生能够归纳出既是2的倍数也是5的倍数的数的特征。
例2:3的倍数的特征
例2教材仍采用百数表,让学生先圈数,再根据提示,观察、思考,回答问题,获得新的发现。3的倍数的特征比较隐蔽,且容易受2和5倍数特征的观察定式、思维定式的影响。为了尽量避免已学知识对新知识学习的负迁移,教材第(2)条指导语,提出两个问题,启发学生排除只看到个位的定式,然后通过第(3)条指导语,提示变换观察的角度。
两个女孩的对话,说出了探究过程中思维转换的关键内容。小精灵的提示,引导学生进一步验证规律。
(三)质数和合数
质数和合数的概念
教材首先让学生找出1—20各数的全部因数,然后按照每个数的因数的个数进行分类。在此基础上给出质数、合数的概念。同时指出1既不是质数,也不是合数。在小学阶段学生可以理解为1只有一个因数,质数有两个因数,合数有三个及多因数。
例1:找出100以内所有的质数
例1教材又采用了百数表,让学生找出100以内的所有质数。通过学生的对话,介绍了两种操作方法。其中依次划去每个质数本身之外的所有倍数的方法,叫做“筛法”,它是数论中有着广泛应用的一个初等方法。
由于小学用到的质数比较少,所以教材中只要求学生找出100以内的所有质数。这些质数不必要求学生都背熟,但是熟悉20以内的质数还是必要的。
例2:探索两数之和的奇偶性
例2是以探索两数之和的奇偶性为例,让学生在探究过程中获得数学活动的经验,丰富解决问题的策略。
教材根据奇数、偶数相加的三种情况,提出了三个问题。“阅读与理解”环节给出了三个问题的一种表征方式,即用算式表示。“分析与解答”环节提示了三种获取结论的方法,即举例、说理、图示。事实上,这三种方法结合使用,可以提高结论的可靠性,增强学生对结论的理解和确信感。“回顾与反思”环节给出了用大数试一试的检验方法,并提出问题,请学生思考其他的验证方法。也就是启发学生联系加减法的关系想到:如果“奇数+偶数=奇数”是对的,那么一定有“奇数—奇数=偶数”“奇数—偶数=奇数”。这样既验证和的奇偶性,又获得了差的奇偶性的结论。作为教师必须清楚,举例验证本质上只是不完全归纳,不是证明。
本单元的教学重点是:因数和倍数的概念;2、5、3的倍数的特征;质数和合数的概念。教学难点是概念之间的联系和区别,在建立概念、运用概念的过程中,逐步发展数学的抽象能力与推理能力。
同步练习:
一、填空
1.在4、9、36这三个数中:( )是( )和( )的倍数,( )和( )是( )的因数;36的因数一共有( )个,它的倍数有( )个。
2.圈出5的倍数:
15 24 35 40 53 78 92 100 54 45 88 60
在以上圈出的数中,奇数有( ),偶数有( )。
3.从0、4、5、8、9中选取三个数字组成三位数:
(1)在能被2整除的数中,最大的是( ),最小的是( );
(2)在能被3整除的数中,最大的是( ),最小的是( );
(3)在能被5整除的数中,最大的是( ),最小的是( )。
4.将2、10、13、22、39、64、57、61、1、73、111按要求填入下面的圈内。
5.用“偶数”和“奇数”填空:
偶数+( )=偶数 偶数×偶数=( )
( )+奇数=奇数 奇数×奇数=( )
奇数+( )=偶数 奇数×( )=偶数
二、选择
2.在四位数21□0的方框里填入一个数字,使它能同时被2、3、5整除,最多有( )种填法。
A.2 B.3 C.4 D.5
4.按因数的个数分,非零自然数可以分为( )。
A.质数和合数 B.奇数和偶数 C.奇数、偶数和1 D.质数、合数和1
5.古希腊数学家认为:如果一个数恰好等于它的所有约数(本身除外)相加的和,那么这个数就是“完全数”。例如:6有四个约数1、2、3、6,除本身6以外,还有1、2、3三个约数,6=1+2+3,恰好是所有约数之和,所以6就是“完全数”。下面数中是“完全数”的是( )。
A.12 B.15 C.28 D.36
三、解答
1.有三张卡片,在它们上面各写有一个数字2、3、7,从中至少取出一张组成一个数,在组成的所有数中,有几个是质数?请将它们写出来。
2.菲菲家的电话号码是一个八位数,记为:ABCDEFGH。已知:A是最小的质数,B是最小的合数,C既不是质数也不是合数,D是比最小的质数小2的数,E是10以内最大的合数,F只有因数1和5,G是8的最大因数,H是6的最小倍数。
3.小丽写了这样的一个算式让小军判断结果是奇数还是偶数:1+2+3+……+993,小军根据所学知识很快就作出了正确的判断,那么,你认为结果应是奇数还是偶数呢?你是用什么方法来解决这个问题的?
4.如图是一张百数表,它能帮助我们学习很多关于“因数和倍数”的数学知识。请你用“”划出所有3的倍数,用“○”圈出所有9的倍数。从你圈出的数中,你能归纳出能被9整除的数的特征吗?
5.体育课上,30名学生站成一行,按老师口令从左到右报数:1,2,3,4,…,30。
(1)老师先让所报的数是2的倍数的同学去跑步,参加跑步的有多少人?
(2)余下学生中所报的数是3的倍数的同学进行跳绳训练,参加跳绳的有多少人?
(3)两批同学离开后,再让余下同学中所报的数是5的倍数的同学去器材室拿篮球,有几个人去拿篮球?
(4)现在队伍里还剩多少人?
1.《111是质数还是合数看这里!名师推荐:小学数学人教版五年级下《2.因数与倍数》精品学案》援引自互联网,旨在传递更多网络信息知识,仅代表作者本人观点,与本网站无关,侵删请联系页脚下方联系方式。
2.《111是质数还是合数看这里!名师推荐:小学数学人教版五年级下《2.因数与倍数》精品学案》仅供读者参考,本网站未对该内容进行证实,对其原创性、真实性、完整性、及时性不作任何保证。
3.文章转载时请保留本站内容来源地址,https://www.lu-xu.com/shehui/2085498.html