在最后一期,张文推荐用数学语言看世界。
读者田显正指出,“数学语言看世界”这个名称是对儿童的误导。起初,我以为彭先生弄错了。后来是个标题。
彭昱成回答:数学不是人,没有眼睛和嘴巴。应该说,数学思维,数学方式,拟人手法,就是数学视觉。这个翻译可能不太符合我们的习惯。书中还有一些小错误。
0在本书中不视为自然数。脚注有说明,大概是翻译或者编辑加的。
有读者留言指出这个问题。
那么0是自然数吗?
在八九十年代的中小学教科书中,0不是自然数。为什么0会突然变成自然数?
事实上,这并不是一下子发生的。直到现在,学术界仍有争议。
分为两个学派,一个是数论学派,他们不承认0是自然数。
比如丹盾教授的《有趣的数论》就是这样。现在转载,为了符合现在中小学的规定,但是编辑要尊重丹盾教授的初衷,所以只能加注释。
另一派是集合论派,极力主张0是自然数。目前集合论学派占了上风,掌握了话语权。
综上所述,这个问题在学术界是有争议的。
在中小学的教学和考试中,我国的有关文件都明确规定0是自然数。从考试的角度,请记住0是自然数。特此声明。
彭宇成注:这本书前言的前两段很有意思。
第一段表达了父母的感受,希望孩子能有所创造。
第二段说明日本人担心中国和印度的崛起。但是作者从更高的层面思考,认为只有全人类都进步了,我们才能活得更好!
为女儿的数学礼物作序
当你出生时,我想,我希望你能在这个世界上快乐生活的同时,成为社会进步的推动者。虽然现代社会有很多问题,但我认为这是人类历史上最激动人心的时刻。像每一位父母一样,我希望我的孩子能享受世界上最好的东西。然而,仅此还不够。这个美好的时代是由人类的智慧和努力构建的。希望你不仅是成就的受益者,也成为创造者,为后人留下更好的成就。
21世纪也可以说是一个不确定的时代,国际社会的规则在不断变化。中国有13亿人,印度有12亿人。如果这些群体中的大多数接受高等教育,然后从事知识研究,世界将呈现出新的面貌。说起这件事,有人担心日本和美国作为发达国家会受到威胁,但我不这么认为。如果发展中国家的数十亿人获得良好的教育机会,许多解决当前社会问题的新方法将会出现。随着世界整体教育水平的提高,可以分配的“蛋糕”可以更大。对于出生在21世纪的你来说,这些情况既是挑战,也是巨大的机遇。
在这个瞬息万变的世界里,独立思考的能力是不可或缺的。欧洲有“文科”的教育传统。自由主义原本的意思是“自由”,意思是“永远不要做奴隶”。也就是说,自由化艺术是一种使人掌握自己命运,成为自由人的修养。无论是成为领导,还是面对意想不到的问题,都要锻炼独立思考和解决问题的能力。
在古罗马,“七大艺术”是逻辑、语法、修辞、音乐、天文学以及算术和几何。前三项是锤炼“论证”的语言技术。我认为这三项排在第一位是因为它们是语言形成的必要条件。只有学会使用语言,我们才能获得思维能力。
七大艺术中,“算术”和“几何”属于数学领域,我觉得很有意思。通常人们认为语言领域的文学或者外语文学属于文科,数学属于理科,但我认为数学和语言学习是一回事。数学能准确描述事物,超越了英语、日语等自然语言的表达能力。所以,如果我们理解了数学,就能看到那些看不见的东西,想出我们从未想过的新点子。
我在小学的时候并没有那么喜欢“算术”,但是进入中学以后,“算术”演变成了“数学”,我渐渐喜欢上了这门学科。带来这种改变的机会,来自于我独立思考时带给我的愉悦。我解数学题的时候,只有一个答案,没有别的。当面对学校里学到的知识无法解答的问题时,这种快感就越来越强烈。而且我不需要问老师答案是否正确,因为我可以独立判断。就像婴儿迈出第一步,新技能拓宽了对世界的体验。希望你也能体会到这份荣幸。
这本书是为了帮助你在21世纪过上有意义的生活而写的。当然,如果你想系统地学习数学,最好用学校的课本。如果把数学看成一门语言,比如把数学比作法语,那么这本书不是从零开始一步步教语法和单词,而是一套实用的会话集。有了它,你可以去法国旅行,用法语在巴黎的餐馆点菜。甚至在服务员介绍“今日推荐菜品”的时候,你也能立刻了解并判断这道菜是否该点。或者去卢浮宫参观,接触过去的伟大作品,可以提升自己的精神境界。除了数学的实际应用,这本书还将讲述从古巴比伦到古希腊数学发展的有趣故事。
我不是数学家。1989年从东京大学获得物理学博士学位,五年后被加州大学伯克利分校聘为教授。从2000年开始,我一直在加州理工学院物理教研室工作。但是2010年,数学教研室的老师邀请我去当数学教授。一开始我以“我从来没有验证过什么著名的定理”为由拒绝了,但他们劝我“验证定理不是对数学有贡献的唯一途径”。你的研究为数学研究提出了新的问题,促进了数学的新发展,所以我不得不接受他们的建议。其实我提到过很多关于数学的猜想,这些猜想都被数学家准确地证明了。所以,我不是证明定理的数学家,而是公认的数学的使用者。这本书讲的也是从用户角度讲的数学知识。
我决定在个人主页上补充一下认证流程、后续话题以及本书没有说明的参考文献,以保证在出现新的发展时,能够及时补充相关知识和新的参考文献。当然,读这本书的时候不需要补充知识。读完这本书,如果你想了解更多,也许浏览我的个人主页http://ooguri.caltech.edu/japanese/mathematics是一个不错的选择。本文还会引用与内容相关的知识点。
用数学语言看世界
彭昱成
这几天看了一本新书《用数学语言看世界》。作者是一位日本物理学家,Hiroshi Kuriba。他可能在物理方面取得了更大的成就,但他对数学也有很深的理解。
这本书是作者为女儿写的,所以和普通科普书有很大区别。这本书没有列出很多知识点,但重点是:
用数学的眼光看现实世界,
用数学思维分析现实世界,
用数学语言表达现实世界。
掷硬币的独立性
如果你扔一枚硬币,扔10次,全部面朝上,然后扔第11次。你怎么想呢?
肯定有人会说,下一次和前10次无关,所以正负概率是1/2。
的确,我们中学课本上也是这么说的。
问题是教科书为了简化,总是假设硬币是正面和背面没有区别的理想硬币。现在扔10次是正的,说明这个硬币可能有问题,不是理想硬币。
基于这枚硬币之前的表现,我们完全有理由猜测,下次更有可能是正面的。
本书第一章是关于如何利用贝叶斯定理从不确定信息中进行判断。
书中有很多翔实的案例,下面列举其中一个。本案是真实案例,影响很大。
这本书的第二章讲述了回归的基本原理,以加深理解。
华说:学好数学,善于“退”出复杂的问题,并且“退”到最原始的地方而不丧失重要性,这是一个诀窍。
理解消极有多积极是个大问题。作者认为应该回归基础。
负数的基本性质是,对于任意一个A,都有-a,所以a+(-a)=0。
书中有这样一段对话。
面试官:在你最近的面试中,你给了追求创新的年轻人一个建议,提到了从基本原则出发思考而不是模仿别人的重要性。你能对此说得更具体一点吗?
马斯克:我们在日常生活中通常不会从基本原则出发去思考。如果我们这样做,我们在精神上无法忍受。所以,我们的大部分生命都是靠类比或者模仿别人度过的。但是当我们想要开拓一个新的领域或真正意义上的创新时,我们必须从基本原则出发。任何领域都一样。我们必须首先发现这个领域最基本的真理,然后重新思考。实现这个过程需要精神上的努力。我举个例子。回归基本原理对我的火箭生涯起到了作用。
下面几章也很精彩。
比如第九章讲解高阶方程。
解不同的方程难度不同。如何建立评价难度的标准?
二次方程为什么有解?你可以想出解决方案,并展示给别人看。所以很好解决。
正如历史学家的名言,不费力就容易破。但是很难判断一维五次方程没有根本解。
如何从二次方程中得到启发,深入研究对称性,引入群的概念,进而开创数学的新分支…
看看亚伯和伽罗瓦是怎么做到的。
为女儿的数学礼物作序
第一章从不确定信息判断
第二章回归的基本原则
第三章大数字并不可怕
第四章不可思议的素数
第五章无限世界和不完全定理
第六章测量宇宙的形状
第七章差异化源于整合
第八章实数“虚数”
第九章衡量“困难”和“美好”
附笔
很多人问:有没有关于数学与生活关系的书?我想这就是了。
1.《0是不是正整数 0是不是自然数?---用数学的语言看世界》援引自互联网,旨在传递更多网络信息知识,仅代表作者本人观点,与本网站无关,侵删请联系页脚下方联系方式。
2.《0是不是正整数 0是不是自然数?---用数学的语言看世界》仅供读者参考,本网站未对该内容进行证实,对其原创性、真实性、完整性、及时性不作任何保证。
3.文章转载时请保留本站内容来源地址,https://www.lu-xu.com/guoji/1473959.html