教学内容:
圆环的面积计算,简单组合图形面积的计算。
教学目标:
1、使学生认识以圆环,掌握圆环的特征,掌握计算圆环面积的方法。
2、培养学生的动手操作能力,观察能力和想象能力,建立初步的空间观念。
3、会计算组合图形的面积,能根据各种图形的特征和条件,有效地选择计算方法。
教学重、难点:
1、掌握计算圆环面积的方法。
2、掌握求简单组合图形面积的方法。
教学方法:
例证法、类比法、迁移法。
教学过程:
一、复习引入
1、圆面积的计算公式
2、计算圆的面积
r=5厘米d=6米C=15.7分米
二、探索新知
1、出示实物,认识圆环
出示光盘。提问:谁能用语言描述这个光盘?
2、实践操作,感知圆环
刚才我们简单认识了圆环,现在你们能用手上的工具剪出一个圆环吗?
学生用一张白纸剪一个圆环。
学生操作,动手剪环形。
说出剪圆环的过程。
让学生介绍剪出圆环的过程,体验大圆中剪掉一个小圆的过程,感受圆环的大小就是大圆面积减去小圆的面积。
3、探究环形面积的计算方法。
小组讨论:如何计算圆环的面积?
反馈讨论结果。
学生汇报时,边说边演示从一个大圆里去掉一个同心小圆变成环形的动态过程:先求出外圆和内圆的面积,再求出环形的面积。
思考:要计算环形的面积需要什么条件?
通过师生交流后,明确要计算环形的面积需要知道外圆的半径或直径和内圆的半径或直径。
4、应用新知,解决问题。
出示例2:光盘的银色部分是个圆环,内圆半径是2厘米,外圆半径是6厘米。它的面积是多少?
读题,理解题意。
分析数量关系。
尝试解答。
反馈解答情况。
方法1:大圆的面积—小圆的面积。
方法2:大圆半径的平方与小圆半径的平方差乘以3.14。
观察比较这两种解法,有什么不同?
师生交流,引导学生发现:通过乘法分配律,这两种方法可以相互转化,其实它们是一致的。
小结:圆环面积的计算方法,大圆的面积—小圆的面积=圆环的面积。
学生尝试用字母表示求圆环面积的计算公式。
三、巩固练习。
1.《圆环的面积 人教版六年级数学上册《圆环的面积》教学设计与反思》援引自互联网,旨在传递更多网络信息知识,仅代表作者本人观点,与本网站无关,侵删请联系页脚下方联系方式。
2.《圆环的面积 人教版六年级数学上册《圆环的面积》教学设计与反思》仅供读者参考,本网站未对该内容进行证实,对其原创性、真实性、完整性、及时性不作任何保证。
3.文章转载时请保留本站内容来源地址,https://www.lu-xu.com/jiaoyu/151299.html