初三数学二次根式的知识点归纳

  二次根式:一般地,式子叫做二次根式.

  注意:(1)若这个条件不成立,则不是二次根式;

  (2)是一个重要的非负数,即;0.

  2.重要公式:(1),(2)

  3.积的算术平方根:

  积的算术平方根等于积中各因式的算术平方根的积;

  4.二次根式的乘法法则:.

  5.二次根式比较大小的方法:

  (1)利用近似值比大小;

  (2)把二次根式的系数移入二次根号内,然后比大小;

  (3)分别平方,然后比大小.

  6.商的算术平方根:,

  商的算术平方根等于被除式的算术平方根除以除式的`算术平方根.

  7.二次根式的除法法则:

  (1);(2);

  (3)分母有理化的方法是:分式的分子与分母同乘分母的有理化因式,使分母变为整式.

  8.最简二次根式:

  (1)满足下列两个条件的二次根式,叫做最简二次根式,①被开方数的因数是整数,因式是整式,②被开方数中不含能开的尽的因数或因式;

  (2)最简二次根式中,被开方数不能含有小数、分数,字母因式次数低于2,且不含分母;

  (3)化简二次根式时,往往需要把被开方数先分解因数或分解因式;

  (4)二次根式计算的最后结果必须化为最简二次根式.

  10.同类二次根式:几个二次根式化成最简二次根式后,如果被开方数相同,这几个二次根式叫做同类二次根式.

  12.二次根式的混合运算:

  (1)二次根式的混合运算包括加、减、乘、除、乘方、开方六种代数运算,以前学过的,在有理数范围内的一切公式和运算律在二次根式的混合运算中都适用;

  (2)二次根式的运算一般要先把二次根式进行适当化简,例如:化为同类二次根式才能合并;除法运算有时转化为分母有理化或约分更为简便;使用乘法公式等.

  第22章一元二次方程

  1.一元二次方程的一般形式:0时,ax2+bx+c=0叫一元二次方程的一般形式,研究一元二次方程的有关问题时,多数习题要先化为一般形式,目的是确定一般形式中的a、b、其中a、b,、c可能是具体数,也可能是含待定字母或特定式子的代数式.

  2.一元二次方程的解法:一元二次方程的四种解法要求灵活运用,其中直接开平方法虽然简单,但是适用范围较小;公式法虽然适用范围大,但计算较繁,易发生计算错误;因式分解法适用范围较大,且计算简便,是首选方法;配方法使用较少.

  3.一元二次方程根的判别式:当ax2+bx+c=00)时,=b2-4ac叫一元二次方程根的判别式.请注意以下等价命题:

  0=有两个不等的实根;=0=有两个相等的实根;0=无实根;

  4.平均增长率问题--------应用题的类型题之一(设增长率为x):

  (1)第一年为a,第二年为a(1+x),第三年为a(1+x)2.

  (2)常利用以下相等关系列方程:第三年=第三年或第一年+第二年+第三年=总和.

1.《二次根式乘法法则 初三数学二次根式的知识点归纳》援引自互联网,旨在传递更多网络信息知识,仅代表作者本人观点,与本网站无关,侵删请联系页脚下方联系方式。

2.《二次根式乘法法则 初三数学二次根式的知识点归纳》仅供读者参考,本网站未对该内容进行证实,对其原创性、真实性、完整性、及时性不作任何保证。

3.文章转载时请保留本站内容来源地址,https://www.lu-xu.com/jiaoyu/182334.html