在近年的高考中经常要考查了向量的数量积及灵活运用,并需要一定的计算技巧,这检测出考生个体理性思维的广度和深度及进一步学习的能力,符合对数学能力考查的命题思想.还有我们经常利用向量的加法法则及平面向量基本定理,因为高考需要考生有较强的数学基础和分析解决问题的能力.既能反映基础知识掌握情况又能考查考生的能力的题目.尽管全国卷考的经常都是小题,但命题对向量综合知识的考查还是是非常到位的。下面是小编整理的平面向量与三角形,供大家参考!
向量的概念
既有方向又有大小的量叫做向量,只有大小没有方向的量叫做数量。
[编辑本段]向量的几何表示
具有方向的线段叫做有向线段,以A为起点,B为终点的有向线段记作AB。
有向线段AB的长度叫做向量的模,记作|AB|。
有向线段包含3个因素:起点、方向、长度。
相等向量、平行向量、共线向量、零向量、单位向量:平面向量与三角形
长度相等且方向相同的向量叫做相等向量。
两个方向相同或相反的非零向量叫做平行向量,
向量a、b平行,记作a//b,零向量与任意向量平行,即0//a,
在向量中共线向量就是平行向量,
长度等于0的向量叫做零向量,记作0。
零向量的方向是任意的;且零向量与任何向量都垂直。
长度等于1个单位长度的向量叫做单位向量。
[编辑本段]平面向量的坐标表示
在直角坐标系内,我们分别取与x轴、y轴方向相同的两个单位向量i、j作为基底。任作一个向量a,由平面向量基本定理知,有且只有一对实数x、y,使得
a= 1i+ 2j
我们把叫做向量a的坐标,记作
a=,
其中x叫做a在x轴上的坐标,y叫做a在y轴上的坐标,上式叫做向量的坐标表示。
在平面直角坐标系内,每一个平面向量都可以用一对实数唯一表示。
[编辑本段]向量的运算
加法运算平面向量与三角形
向量加法的定义
已知向量a、b,在平面上任意取一点A,作AB=a,BC=b,再作向量AC,则向量AC叫做a与b的和,记做a+b,即a+b=AB+BC=AC
AB+BC=AC,这种计算法则叫做向量加法的三角形法则。
已知两个从同一点O出发的两个向量OA、OB,以OA、OB为邻边作平行四边形OACB,则以O为起点的对角线OC就是向量OA、OB的和,这种计算法则叫做向量加法的平行四边形法则。
对于零向量和任意向量a,有:0+a=a+0=a。
|a+b| |a|+|b|。
向量的加法满足所有的加法运算定律。
减法运算
AB-AC=CB,这种计算法则叫做向量减法的三角形法则。
与a长度相等,方向相反的向量,叫做a的相反向量,-=a,零向量的相反向量仍然是零向量。
a+=+a=0a-b=a+。
数乘运算
实数 与向量a的积是一个向量,这种运算叫做向量的数乘,记作 a,| a|=| ||a|,当 0时, a的方向和a的方向相同,当 0时, a的方向和a的方向相反,当 = 0时, a = 0。
设 、 是实数,那么:a = a = a + a = a ba =- = 。
向量的加法运算、减法运算、数乘运算统称线性运算。
坐标运算
已知a=,b=,则
a+b=+
=i+j
即 a+b=。
同理可得 a-b=。
这就是说,两个向量和与差的坐标分别等于这两个向量相应坐标的和与差。
由此可以得到:
一个向量的坐标等于表示此向量的有向线段的终点坐标减去始点的坐标。
根据上面的结论又可得
若a=,则 a=
这就是说,实数与向量的积的坐标等于用这个实数乘原来向量的相应坐标。
[编辑本段]向量的数量积
已知两个非零向量a、b,那么|a||b|cos 叫做a与b的数量积或内积,记作a b, 是a与b的夹角,|a|cos 叫做向量a在b方向上的投影。零向量与任意向量的数量积为0。
a b的几何意义:数量积a b等于a的长度|a|与b在a的方向上的投影|b|cos 的乘积。
两个向量的数量积等于它们对应坐标的乘积的和。即:若a=,b=,则a b=x1x2+y1y2
向量的数量积的性质
a a=∣a∣^2 0
a b=b a
k=b=a
a =a b+a c
a b=0 = a b
a=kb = a//b
e1 e2=|e1||e2|cos =cos
[编辑本段]平面向量的基本定理
如果e1和e2是同一平面内的两个不共线向量,那么对该平面内的任一向量a,有且只有一对实数 、 ,使a= *e1+ *e2,。
[编辑本段]相关练习
1.若a =0,则对任一向量b ,有a b=0. 对
2.若a 0,则对任一非零向量b ,有a b 0. 错
3.若a 0,a b =0,则b=0 错
4.若a b=0,则a b中至少有一个为0. 错
5.若a 0,a b= b c,则a=c 错
6.若a b = a c ,则b c,当且仅当a= 0 时成立. 错
7.对任意向量 a 有a*a=∣a∣* ∣a∣ 对
1.《平面向量坐标运算公式 【平面向量的所有公式】平面向量与三角形》援引自互联网,旨在传递更多网络信息知识,仅代表作者本人观点,与本网站无关,侵删请联系页脚下方联系方式。
2.《平面向量坐标运算公式 【平面向量的所有公式】平面向量与三角形》仅供读者参考,本网站未对该内容进行证实,对其原创性、真实性、完整性、及时性不作任何保证。
3.文章转载时请保留本站内容来源地址,https://www.lu-xu.com/jiaoyu/218138.html