出国留学网为您整理“中考数学知识讲解:二次函数顶点坐标公式”,欢迎阅读参考,更多有关内容请继续关注本网站中考栏目。
中考数学知识讲解:二次函数顶点坐标公式
一、基本简介
一般地,我们把形如y=ax2+bx+c的函数叫做二次函数,其中a称为二次项系数,b为一次项系数,c为常数项。x为自变量,y为因变量。等号右边自变量的最高次数是2。
主要特点
“变量”不同于“未知数”,不能说“二次函数是指未知数的最高次数为二次的多项式函数”。“未知数”只是一个数,“变量”可在一定范围内任意取值。在方程中适用“未知数”的概念,但是函数中的字母表示的是变量,意义已经有所不同。从函数的定义也可看出二者的差别.如同函数不等于函数关系。
二次函数图像与X轴交点的情况
当△=b2-4ac>0时,函数图像与x轴有两个交点。
当△=b2-4ac=0时,函数图像与x轴只有一个交点。
当△=b2-4ac<0时,函数图像与x轴没有交点。
二、二次函数图像
在平面直角坐标系中作出二次函数y=ax^2+bx+c的图像,可以看出,二次函数的图像是一条永无止境的抛物线。如果所画图形准确无误,那么二次函数图像将是由一般式平移得到的。
轴对称
二次函数图像是轴对称图形。对称轴为直线x=-b/2a
对称轴与二次函数图像唯一的交点为二次函数图像的顶点P。
特别地,当b=0时,二次函数图像的对称轴是y轴。
a,b同号,对称轴在y轴左侧.
a,b异号,对称轴在y轴右侧.
顶点
二次函数图像有一个顶点P,坐标为P即.
当h=0时,P在y轴上;当k=0时,P在x轴上。即可表示为顶点式y=a2+k。
h=-b/2a,k=/4a。
开口方向和大小
二次项系数a决定二次函数图像的开口方向和大小。
当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。
a越大,则二次函数图像的开口越小。
决定对称轴位置的因素折叠
一次项系数b和二次项系数a共同决定对称轴的位置。
当a>0,与b同号时,对称轴在y轴左;因为对称轴在左边则对称轴小于0,也就是-b/2a<0,所以b/2a要大于0,所以a、b要同号
当a>0,与b异号时,对称轴在y轴右。因为对称轴在右边则对称轴要大于0,也就是-b/2a>0,所以b/2a要小于0,所以a、b要异号
可简单记忆为左同右异,即当a与b同号时,对称轴在y轴左;当a与b异号时,对称轴在y轴右。
事实上,b有其自身的几何意义:二次函数图像与y轴的交点处的该二次函数图像切线的函数解析式的斜率k的值。可通过对二次函数求导得到。
决定与y轴交点的因素
常数项c决定二次函数图像与y轴交点。
二次函数图像与y轴交于
注意:顶点坐标为,与y轴交于。
与x轴交点个数
a<0;k>0或a>0;k<0时,二次函数图像与x轴有2个交点。
k=0时,二次函数图像与x轴只有1个交点。
a<0;k<0或a>0,k>0时,二次函数图像与X轴无交点。
当a>0时,函数在x=h处取得最小值ymin=k,在x
当a<0时,函数在x=h处取得最大值ymax=k,在x
当h=0时,抛物线的对称轴是y轴,这时,函数是偶函数
三、二次函数公式汇总:交点式、两根式
一般地,自变量x和因变量y之间存在如下关系:
一般式:y=ax2+bx+c,则称y为x的二次函数。顶点坐标/4a)
顶点式:y=a2+k或y=a^2+k。
交点式:y=a
两根式:y=a,其中x1,x2是抛物线与x轴的交点的横坐标,即一元二次方程ax2+bx+c=0的两个根,a≠0.
说明:
任何一个二次函数通过配方都可以化为顶点式y=a2+k,抛物线的顶点坐标是,h=0时,抛物线y=ax2+k的顶点在y轴上;当k=0时,抛物线a2的顶点在x轴上;当h=0且k=0时,抛物线y=ax2的顶点在原点。
当抛物线y=ax2+bx+c与x轴有交点时,即对应二次方程ax2+bx+c=0有实数根x1和x2存在时,根据二次三项式的分解公式ax2+bx+c=a,二次函数y=ax2+bx+c可转化为两根式y=a。
数学的学习并不难,重要的是找到学习的兴趣,兴趣是学习最好的老师,是走向成功的阶梯。
1.《抛物线的顶点坐标公式 中考数学知识讲解:二次函数顶点坐标公式》援引自互联网,旨在传递更多网络信息知识,仅代表作者本人观点,与本网站无关,侵删请联系页脚下方联系方式。
2.《抛物线的顶点坐标公式 中考数学知识讲解:二次函数顶点坐标公式》仅供读者参考,本网站未对该内容进行证实,对其原创性、真实性、完整性、及时性不作任何保证。
3.文章转载时请保留本站内容来源地址,https://www.lu-xu.com/jiaoyu/255331.html