很多同学都学习了有理数,那么什么是有理数?什么是有理数集?大家一起来看看吧。

有理数集简介

数学上,有理数是一个整数a和一个非零整数b的比,例如3/8,通则为a/b。0也是有理数。有理数是整数和分数的集合,整数也可看做是分母为一的分数。

有理数与分数的区别,分数是一种比值的记法。可以是无理数,例如根号2/2。

有理数的小数部分是有限或为无限循环的数。不是有理数的实数称为无理数,即无理数的小数部分是无限不循环的数。

有理数集,即由所有有理数所构成的集合,用黑体字母Q表示。有理数集是实数集的子集。

有理数名字的由来

有理数这一概念最早源自西方《几何原本》,明末数学家徐光启和学者利玛窦翻译《几何原本》,前6卷时的底本是拉丁文,他们将这个词的拉丁文( 即“logos”) 译为“理”,这个“理”在文言文中的意思是“比值”。

明末时期日本落后于我们,常常派使者来我国,这个有理数的概念也被他们拿走了,但是当时的日本学者对我国的文言文理解不够,直接将在文言文中表示“比值”的“理”直译成了“道理”的“理”,没文化真坑人呀!

直到清朝中期我国对有理数的翻译并没有错,可是到了清末,那时候中国落后于日本,于是清朝派留学生去日本,居然又将此名词重新传回中国,并且一直沿用至今。以致于现在中日两国都用“有理数”和“无理数”这一错误的说法。所以说现在对“有理数”名称的理解的疑惑是历史原因造成的。

有理数大小的比较

由正有理数的大小排列我们可以知道“在数轴上表示的两个数,右边的数总比左边的数大”,于是规定“数轴上右边的点所表示的数大于左边的点所表示的数。”

根据这个规定,可以知道:正数都大于0;负数都小于0;正数大于一切负数。

对于两个正数的大小,小学时我们已经知道。关于两个负数的比较大小,我们虽然已经可以根据它们在数轴上的位置确定,但是我们希望把它们转化为正数来进行比较,这样会使计算简便。如|-3|=3,|-2|=2,因为3>2,所以|-3|>|-2|而由数轴可知-3<-2,即“两个负数,绝对值大的反而小”。

以上就是有关有理数的简介,供大家参考。

1.《有理数集 什么叫有理数集 有理数的由来》援引自互联网,旨在传递更多网络信息知识,仅代表作者本人观点,与本网站无关,侵删请联系页脚下方联系方式。

2.《有理数集 什么叫有理数集 有理数的由来》仅供读者参考,本网站未对该内容进行证实,对其原创性、真实性、完整性、及时性不作任何保证。

3.文章转载时请保留本站内容来源地址,https://www.lu-xu.com/jiaoyu/323510.html