说到高二数学,很多同学都会说难很难,的确,相对而言,高二数学是高中数学中最难的一部分,但我们一定要把知识点给吃透。下面就是小编给大家带来的高二数学必修五知识点总结,希望能帮助到大家!
高二数学必修五知识点总结1
1.等差数列通项公式
an=a1+(n-1)d
n=1时a1=S1
n≥2时an=Sn-Sn-1
an=kn+b(k,b为常数)推导过程:an=dn+a1-d令d=k,a1-d=b则得到an=kn+b
2.等差中项
由三个数a,A,b组成的等差数列可以堪称最简单的等差数列。这时,A叫做a与b的等差中项(arithmeticmean)。
有关系:A=(a+b)÷2
3.前n项和
倒序相加法推导前n项和公式:
Sn=a1+a2+a3+·····+an
=a1+(a1+d)+(a1+2d)+······+[a1+(n-1)d]①
Sn=an+an-1+an-2+······+a1
=an+(an-d)+(an-2d)+······+[an-(n-1)d]②
由①+②得2Sn=(a1+an)+(a1+an)+······+(a1+an)(n个)=n(a1+an)
∴Sn=n(a1+an)÷2
等差数列的前n项和等于首末两项的和与项数乘积的一半:
Sn=n(a1+an)÷2=na1+n(n-1)d÷2
Sn=dn2÷2+n(a1-d÷2)
亦可得
a1=2sn÷n-an=[sn-n(n-1)d÷2]÷n
an=2sn÷n-a1
有趣的是S2n-1=(2n-1)an,S2n+1=(2n+1)an+1
4.等差数列性质
一、任意两项am,an的关系为:
an=am+(n-m)d
它可以看作等差数列广义的通项公式。
二、从等差数列的定义、通项公式,前n项和公式还可推出:
a1+an=a2+an-1=a3+an-2=…=ak+an-k+1,k∈N
_
、若m,n,p,q∈N_且m+n=p+q,则有am+an=ap+aq
四、对任意的k∈N_有
Sk,S2k-Sk,S3k-S2k,…,Snk-S(n-1)k…成等差数列。
高二数学必修五知识点总结2
●解三角形
1. ?
2.解三角形中的基本策略:角 边或边 角。如 ,则三角形的形状?
3.三角形面积公式 ,如三角形的三边是 ,面积是?
4.求角的几种问题: ,求
△面积是 ,求 . ,求cosc
5.一些术语名词:仰角(俯角),方位角,视角分别是什么?
6.三角形的三个内角a,b,c成等差数列,则 三角形的三边a,b,c成等差数列,则
三角形的三边a,b,c成等比数列,则 ,你会证明这三个结论么?
数列
★★1.一个重要的关系 注意验证 与 等不等?如已知
2. 为等差
为等比
注:等比数列有一个非常重要的关系:所有的奇(偶)数项 .如{an}是等比数列,且
★★3.等差数列常用的性质:
①下标和相等的两项和相等,如 是方程 的两根,则
②在等差数列中, ……成等差数列,如在等差数列中,
③若一个项数为奇数的等差数列,则 , ------
4.数列的项问题一定是要研究该数列是怎么变化的?(数列的单调性)——研究 的大小。
数列的(小)和问题,
如:等差数列中, ,则 时的n= .等差数列中, ,则 时的n=
5.数列求和的方法:
①公式法:等差数列的前5项和为15,后5项和为25,且 ★②分组求和法:
★③裂项求和法——两种情况的数列用:
★★④错位相减法——等差比数列(如 )——如何错位?相减要注意什么?最后不要忘记什么?
6.求通项的方法
①运用关系式 ★②累加(如 )
★③累乘(如
★★④构造新数列——如 ,a1=1,求an=?
高二数学必修五知识点总结3
解三角形
1、三角形三角关系:A+B+C=180°;C=180°-(A+B);
2、三角形三边关系:a+b>c;a-b3、三角形中的基本关系:sin(A?B)?sinC,cos(A?B)??cosC,tan(A?B)??tanC,A?BCA?BCA?BC?cos,cos?sin,tan?cot 222222
4、正弦定理:在???C中,a、b、c分别为角?、?、C的对边,R为???C的外abc???2R.接圆的半径,则有sin?sin?sinCsin
5、正弦定理的变形公式:
①化角为边:a?2Rsin?,b?2Rsin?,c?2RsinC; abc,sin??,sinC?; 2R2R2R
a?b?cabc???③a:b:c?sin?:sin?:sinC;④.sin??sin??sinCsin?sin?sinC②化边为角:sin??6、两类正弦定理解三角形的问题:
①已知两角和任意一边,求其他的两边及一角.
②已知两角和其中一边的对角,求其他边角.(对于已知两边和其中一边所对的角的题型要注意解的情况(一解、两解、三解))
7、余弦定理:在???C中,有a?b?c?2bccos?,b?a?c?2accos?, 222222c2?a2?b2?2abcosC.
b2?c2?a2a2?c2?b2a2?b2?c2
8、余弦定理的推论:cos??,cos??,cosC?.2bc2ac2ab(余弦定理主要解决的问题:1.已知两边和夹角,求其余的量。2.已知三边求角)
9、余弦定理主要解决的问题:①已知两边和夹角,求其余的量。②已知三边求角)
10、如何判断三角形的形状:判定三角形形状时,可利用正余弦定理实现边角转化,统一成边的形式或角的形式设a、b、c是???C的角?、?、C
的对边,则:
①若a?b?c,则C?90;②若a?b?c,则C?90;
③若a?b?c,则C?90.
高二数学必修五知识点总结4
数列
1、数列的定义及数列的通项公式:
①. an?f(n),数列是定义域为N
的函数f(n),当n依次取1,2,???时的一列函数值 ② i.归纳法
若S0?0,则an不分段;若S0?0,则an分段iii.若an?1?pan?q,则可设an?1?m?p(an?m)解得m,得等比数列?an?m?
?Sn?f(an)
iv. 若Sn?f(an),先求a
1?得到关于an?1和an的递推关系式
S?f(a)n?1?n?1?Sn?2an?1
例如:Sn?2an?1先求a1,再构造方程组:??(下减上)an?1?2an?1?2an
?Sn?1?2an?1?1
2.等差数列:
① 定义:a
n?1?an=d(常数),证明数列是等差数列的重要工具。 ② 通项d?0时,an为关于n的一次函数;
d>0时,an为单调递增数列;d<0时,a
n为单调递减数列。
n(n?1)2
③ 前n?na1?
d,
d?0时,Sn是关于n的不含常数项的一元二次函数,反之也成立。
④ 性质: ii. 若?an?为等差数列,则am,am?k,am?2k,…仍为等差数列。 iii.若?an?为等差数列,则Sn,S2n?Sn,S3n?S2n,…仍为等差数列。 iv 若A为a,b的等差中项,则有A?3.等比数列:
① 定义:
an?1an
?q(常数),是证明数列是等比数列的重要工具。
a?b2
。
② 通项时为常数列)。
③.前n项和
需特别注意,公比为字母时要讨论.
高二数学必修五知识点总结5
排列P------和顺序有关
组合C-------不牵涉到顺序的问题
排列分顺序,组合不分
例如把5本不同的书分给3个人,有几种分法."排列"
把5本书分给3个人,有几种分法"组合"
1.排列及计算公式
从n个不同元素中,任取m(m≤n)个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号p(n,m)表示.
p(n,m)=n(n-1)(n-2)……(n-m+1)=n!/(n-m)!(规定0!=1).
2.组合及计算公式
从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数.用符号
c(n,m)表示.
c(n,m)=p(n,m)/m!=n!/((n-m)!_!);c(n,m)=c(n,n-m);
3.其他排列与组合公式
从n个元素中取出r个元素的循环排列数=p(n,r)/r=n!/r(n-r)!.
n个元素被分成k类,每类的个数分别是n1,n2,...nk这n个元素的全排列数为
n!/(n1!_2!_.._k!).
k类元素,每类的个数无限,从中取出m个元素的组合数为c(m+k-1,m).
排列(Pnm(n为下标,m为上标))
Pnm=n×(n-1)....(n-m+1);Pnm=n!/(n-m)!(注:!是阶乘符号);Pnn(两个n分别为上标和下标)=n!;0!=1;Pn1(n为下标1为上标)=n
组合(Cnm(n为下标,m为上标))
Cnm=Pnm/Pmm;Cnm=n!/m!(n-m)!;Cnn(两个n分别为上标和下标)=1;Cn1(n为下标1为上标)=n;Cnm=Cnn-m
2008-07-0813:30
公式P是指排列,从N个元素取R个进行排列。公式C是指组合,从N个元素取R个,不进行排列。N-元素的总个数R参与选择的元素个数!-阶乘,如9!=9________
从N倒数r个,表达式应该为n_n-1)_n-2)..(n-r+1);
因为从n到(n-r+1)个数为n-(n-r+1)=r
高二数学必修五知识点归纳大全5篇
1.《数学必修五知识点总结 高二数学必修五知识点归纳大全5篇》援引自互联网,旨在传递更多网络信息知识,仅代表作者本人观点,与本网站无关,侵删请联系页脚下方联系方式。
2.《数学必修五知识点总结 高二数学必修五知识点归纳大全5篇》仅供读者参考,本网站未对该内容进行证实,对其原创性、真实性、完整性、及时性不作任何保证。
3.文章转载时请保留本站内容来源地址,https://www.lu-xu.com/jiaoyu/349216.html