等差数列是指从第二项起,每一项与它的前一项的差等于同一个常数的一种数列,常用A、P表示。这个常数叫做等差数列的公差,公差常用字母d表示。本文中,小编整理了相关知识,欢迎阅读。

等差数列的基本性质

(1)数列为等差数列的重要条件是:数列的前n项和S 可以写成S = an^2 + bn的形式(其中a、b为常数)

(2)在等差数列中,当项数为2n (n∈ N+)时,S偶-S奇 = nd,S奇÷S偶=an÷a(n+1);当项数为(2n-1)(n∈ N+)时,S奇—S偶=a(中),S奇-S偶=项数*a(中) ,S奇÷S偶 =n÷(n-1)

(3)若数列为等差数列,则Sn,S2n -Sn ,S3n -S2n,…仍然成等差数列,公差为k^2d

(4)若数列{an}与{bn}均为等差数列,且前n项和分别是Sn和Tn,则am/bm=S2m-1/T2m-1。

(5)在等差数列中,S = a,S = b (n>m),则S = (a-b)

(6)等差数列中, 是n的一次函数,且点(n, )均在直线y = x + (a - )上

(7)记等差数列的前n项和为S .①若a >0,公差d<0,则当a ≥0且an+1≤0时,S 最大;②若a <0 ,公差d>0,则当a ≤0且an+1≥0时,S 最小

(8)若等差数列S(p)=q,S(q)=p,则S(p+q)=-(p+q)

等差数列的判定

1、a(n+1)--a(n)=d (d为常数、n ∈N*)[或a(n)--a(n-1)=d,n ∈N*,n ≥2,d是常数]等价于{a(n)}成等差数列。

2、2a(n+1)=a(n)+a(n+2) [n∈N*] 等价于{a(n)}成等差数列。

3、a(n)=kn+b [k、b为常数,n∈N*] 等价于{a(n)}成等差数列。

4、S(n)=A(n)^2 +B(n) [A、B为常数,A不为0,n ∈N* ]等价于{a(n)}为等差数列。

等差数列和等比数列区别

等差数列是前一项与后一项的差相等,等比数列是前一项与后一项的比相等。

1、等差数列是前一项与后一项的差是常数。如:1,4,7,10,13,16,……

等差数列的通项公式:an=a1+(n-1)d=dn+a1-d

2、等比数列是前一项除以后一项等于一个固定常数q。如:,3,9,27,……

等比数列的通项公式:an=a1·q(n-1)

以上是小编为大家整理的相关知识,希望对大家有所帮助。

1.《等差中项公式是什么 数学中的等差数列是什么》援引自互联网,旨在传递更多网络信息知识,仅代表作者本人观点,与本网站无关,侵删请联系页脚下方联系方式。

2.《等差中项公式是什么 数学中的等差数列是什么》仅供读者参考,本网站未对该内容进行证实,对其原创性、真实性、完整性、及时性不作任何保证。

3.文章转载时请保留本站内容来源地址,https://www.lu-xu.com/jiaoyu/362154.html