交集:集合论中,设A,B是两个集合,由所有属于集合A且属于集合B的元素所组成的集合,叫做集合A与集合B的交集。并集:给定两个集合A,B,把他们所有的元素合并在一起组成的集合,叫做集合A与集合B的并集。
交集和并集的例题1、已知集合A={1,2,3,4,5},B={1,3,5,7},求B∩A。
2、已知集合A={(x,y)|x+2y=5},B={(x,y)|5x-2y=1},求B∩A。
3、已知集合A={x|-2
4、已知集合A={-1,1,2},B={0,2,3},求B∪A。
5、设全集U={a,b,c,d},A={a,b},B={b,c,d},则AUB=?
6、设A={(x,y)|4x+y=6},B={(x,y)|3x+2y=7},则AB为?
7、已知集合A={1,3,5,7,9},B={0,3,6,9,12},则A∩B=?
8、集合A={0,2,a},B={1,a2}.若A∪B={0,1,2,4,16},则a的值为?
9、设集合A={x|2≤x<4},B={x|3x-7≥8-2x},则A∪B等于?
10、已知A,B均为集合U={1,3,5,7,9}的子集,且AB={3},AUB={9},则A=?
并集的定义若A和B是集合,则A和B并集是有所有A的元素和所有B的元素,而没有其他元素的集合。A和B的并集通常写作"A∪B",读作“A并B”,用符号语言表示,即:A∪B={x|x∈A,或x∈B}。
关于并集有如下性质:
A∪A=A,A∪∅=A,A∪B=B∪A
若A∩B=A,则A∈B,反之也成立;
若A∪B=B,则A∈B,反之也成立。
若x∈(A∩B),则x∈A且x∈B;
若x∈(A∪B),则x∈A,或x∈B。
交集的定义集合论中,设A,B是两个集合,由所有属于集合A且属于集合B的元素所组成的集合,叫做集合A与集合B的交集。即:A∩B={x|x∈A∧x∈B}。
若两个集合A和B的交集为空,则说他们没有公共元素。
任何集合与空集的交集都是空集,即A∩∅=∅。
交集运算可以对多个集合同时进行。
1.《并集和交集 交集和并集的例子》援引自互联网,旨在传递更多网络信息知识,仅代表作者本人观点,与本网站无关,侵删请联系页脚下方联系方式。
2.《并集和交集 交集和并集的例子》仅供读者参考,本网站未对该内容进行证实,对其原创性、真实性、完整性、及时性不作任何保证。
3.文章转载时请保留本站内容来源地址,https://www.lu-xu.com/jiaoyu/403253.html