当前位置:首页 > 教育

海伦公式是什么 海式是什么啊

题目:

海式是什么啊

解答:

假设有一个三角形,边长分别为a、b、c,三角形的面积S可由以下公式求得:S=√[p(p-a)(p-b)(p-c)]而公式里的p为半周长:p=(a+b+c)/2

1.《海伦公式是什么 海式是什么啊》援引自互联网,旨在传递更多网络信息知识,仅代表作者本人观点,与本网站无关,侵删请联系页脚下方联系方式。

2.《海伦公式是什么 海式是什么啊》仅供读者参考,本网站未对该内容进行证实,对其原创性、真实性、完整性、及时性不作任何保证。

3.文章转载时请保留本站内容来源地址,https://www.lu-xu.com/jiaoyu/436002.html

上一篇

梅岭三章翻译 陈毅的《梅岭三章》翻译

下一篇

经线和纬线 经纬线的概念及意义

logax的导数 对数求导公式

对数求导的公式:(logax)"=1/(xlna)。一般地,如果a(a>0,且a≠1)的b次幂等于N,那么数b叫做以a为底N的对数,记作logaN=b,其中a叫做对数的底数,N叫做真数。一般地,如果a(a>0,且a≠1)的b次幂等于N,那么数b叫做以a为底N的对数,记作logaN=b,其中a叫做对数的底数,N叫做真数。底数则要>0且≠1 真数>0...

直角三角形全等的判定 直角三角形全等的判定

直角三角形全等的判定 直角三角形全等的判定

直角三角形全等的判定:1.三组对应边分别相等的两个三角形全等。2、有两边及其夹角对应相等的两个三角形全等。3、有两角及其夹边对应相等的两个三角形全等。判定方法方法一:SSS(边边边),即三边对应相等的两个三角形全等。方法二:SAS(边角边),即三角形的其中两条边对应相等,且两条边的夹角也对应相等的两个三角形全等。方法三:ASA(角边角),即三角形...

ln2x求导 对数函数求导公式

ln2x求导 对数函数求导公式

对数函数求导公式:(Inx)" = 1/x(ln为自然对数);(logax)" =x^(-1) /lna(a>0且a不等于1)。对数的运算性质当a>0且a≠1时,M>0,N>0,那么:(1)log(a)(MN)=log(a)(M)+log(a)(N);(2)log(a)(M/N)=log(a)(M)-log(a)(N);(3)log(a)(M^n...

对数与指数的转化公式 对数函数求导公式

对数与指数的转化公式 对数函数求导公式

对数函数求导公式:(Inx)" = 1/x(ln为自然对数);(logax)" =x^(-1) /lna(a>0且a不等于1)。对数的运算性质当a>0且a≠1时,M>0,N>0,那么:(1)log(a)(MN)=log(a)(M)+log(a)(N);(2)log(a)(M/N)=log(a)(M)-log(a)(N);(3)log(a)(M^n...

log的导数公式 对数函数求导公式

log的导数公式 对数函数求导公式

对数函数求导公式:(Inx)" = 1/x(ln为自然对数);(logax)" =x^(-1) /lna(a>0且a不等于1)。对数的运算性质当a>0且a≠1时,M>0,N>0,那么:(1)log(a)(MN)=log(a)(M)+log(a)(N);(2)log(a)(M/N)=log(a)(M)-log(a)(N);(3)log(a)(M^n...

对数公式 对数函数求导公式

对数公式 对数函数求导公式

对数函数求导公式:(Inx)" = 1/x(ln为自然对数);(logax)" =x^(-1) /lna(a>0且a不等于1)。对数的运算性质当a>0且a≠1时,M>0,N>0,那么:(1)log(a)(MN)=log(a)(M)+log(a)(N);(2)log(a)(M/N)=log(a)(M)-log(a)(N);(3)log(a)(M^n...

对数求导 对数函数求导公式

对数求导 对数函数求导公式

对数函数求导公式:(Inx)" = 1/x(ln为自然对数);(logax)" =x^(-1) /lna(a>0且a不等于1)。对数的运算性质当a>0且a≠1时,M>0,N>0,那么:(1)log(a)(MN)=log(a)(M)+log(a)(N);(2)log(a)(M/N)=log(a)(M)-log(a)(N);(3)log(a)(M^n...

log求导 对数函数求导公式

log求导 对数函数求导公式

对数函数求导公式:(Inx)" = 1/x(ln为自然对数);(logax)" =x^(-1) /lna(a>0且a不等于1)。对数的运算性质当a>0且a≠1时,M>0,N>0,那么:(1)log(a)(MN)=log(a)(M)+log(a)(N);(2)log(a)(M/N)=log(a)(M)-log(a)(N);(3)log(a)(M^n...