题目:
高中所有关于字母转换的数学公式,就比如sin(A+B)=sinAcosB+cosAsinB 这样的,
解答:
一、诱导公式口诀:(分子)奇变偶不变,符号看象限.1. sin (α+k•360)=sin α cos (α+k•360)=cos a tan (α+k•360)=tan α2. sin(180°+β)=-sinα cos(180°+β)=-cosa3. sin(-α)=-sina cos(-a)=cosα4*. tan(180°+α)=tanα tan(-α)=tanα5. sin(180°-α)=sinα cos(180°-α)=-cosα6. sin(360°-α)=-sinα cos(360°-α)=cosα7. sin(π/2-α)=cosα cos(π/2-α)=sinα8*. Sin(3π/2-α)=-cosα cos(3π/2-α)=-sinα9*. Sin(π/2+α)=cosα cos(π/2+a)=-sinα10*.sin(3π/2+α)=-cosα cos(3π/2+α)=sinα二、两角和与差的三角函数1. 两点距离公式 2. S(α+β): sin(α+β)=sinαcosβ+cosαsinβ C(α+β): cos(α+β)=cosαcosβ-sinαsinβ3. S(α-β): sin(α-β)=sinαcosβ-cosαsinβ C(α-β): cos(α-β)=cosαcosβ+sinαsinβ4. T(α+β): T(α-β): 5*. 三、二倍角公式1. S2α: sin2α=2sinαcosα2. C2a: cos2α=cos¬2α-sin2a3. T2α: tan2α=(2tanα)/(1-tan2α)4. C2a’: cos2α=1-2sin2α cos2α=2cos2α-1四*、其它杂项(全部不可直接用)1.辅助角公式 asinα+bcosα= sin(a+φ),其中tanφ=b/a,其终边过点(a, b) asinα+bcosα= cos(a-φ),其中tanφ=a/b,其终边过点(b,a)2.降次、配方公式 降次: sin2θ=(1-cos2θ)/2 cos2θ=(1+cos2θ)/2 配方 1±sinθ=[sin(θ/2)±cos(θ/2)]2 1+cosθ=2cos2(θ/2) 1-cosθ=2sin2(θ/2)3. 三倍角公式sin3θ=3sinθ-4sin3θcos3θ=4cos3-3cosθ4. 万能公式 5. 和差化积公式sinα+sinβ= 书p45 例5(2)sinα-sinβ= cosα+cosβ= cosα-cosβ= 6. 积化和差公式sinαsinβ=1/2[sin(α+β)+sin(α-β)] 书p45 例5(1)cosαsinβ=1/2[sin(α+β)-sin(α-β)]sinαsinβ-1/2[cos(α+β)-cos(α-β)]cosαcosβ=1/2[cos(α+β)+cos(α-β)]7. 半角公式 sin^2(α/2)=(1-cosα)/2cos^2(α/2)=(1+cosα)/2tan^2(α/2)=(1-cosα)/(1+cosα)tan(α/2)=sinα/(1+cosα)=(1-cosα)/sinα三角函数 三角函数是数学中属于初等函数中的超越函数的一类函数.它们的本质是任意角的集合与一个比值的集合的变量之间的映射.通常的三角函数是在平面直角坐标系中定义的,其定义域为整个实数域.另一种定义是在直角三角形中,但并不完全.现代数学把它们描述成无穷数列的极限和微分方程的解,将其定义扩展到复数系.由于三角函数的周期性,它并不具有单值函数意义上的反函数.三角函数在复数中有较为重要的应用.在物理学中,三角函数也是常用的工具.基本初等内容它有六种基本函数(初等基本表示):函数名 正弦 余弦 正切 余切 正割 余割正弦函数 sinθ=y/r余弦函数 cosθ=x/r正切函数 tanθ=y/x余切函数 cotθ=x/y正割函数 secθ=r/x余割函数 cscθ=r/y以及两个不常用,已趋于被淘汰的函数:正矢函数 versinθ =1-cosθ余矢函数 vercosθ =1-sinθ同角三角函数间的基本关系式:•平方关系: sin^2(α)+cos^2(α)=1 tan^2(α)+1=sec^2(α) cot^2(α)+1=csc^2(α)•积的关系: sinα=tanα*cosα cosα=cotα*sinα tanα=sinα*secα cotα=cosα*cscα secα=tanα*cscα cscα=secα*cotα•倒数关系: tanα•cotα=1 sinα•cscα=1 cosα•secα=1 三角函数恒等变形公式:•两角和与差的三角函数:cos(α+β)=cosα•cosβ-sinα•sinβcos(α-β)=cosα•cosβ+sinα•sinβsin(α±β)=sinα•cosβ±cosα•sinβtan(α+β)=(tanα+tanβ)/(1-tanα•tanβ)tan(α-β)=(tanα-tanβ)/(1+tanα•tanβ)•辅助角公式:Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中sint=B/(A^2+B^2)^(1/2)cost=A/(A^2+B^2)^(1/2)•倍角公式:sin(2α)=2sinα•cosαcos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)tan(2α)=2tanα/[1-tan^2(α)]•三倍角公式:sin3α=3sinα-4sin^3(α)cos3α=4cos^3(α)-3cosα•半角公式:sin^2(α/2)=(1-cosα)/2cos^2(α/2)=(1+cosα)/2tan^2(α/2)=(1-cosα)/(1+cosα)tan(α/2)=sinα/(1+cosα)=(1-cosα)/sinα•万能公式:sinα=2tan(α/2)/[1+tan^2(α/2)]cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]tanα=2tan(α/2)/[1-tan^2(α/2)]•积化和差公式:sinα•cosβ=(1/2)[sin(α+β)+sin(α-β)]cosα•sinβ=(1/2)[sin(α+β)-sin(α-β)]cosα•cosβ=(1/2)[cos(α+β)+cos(α-β)]sinα•sinβ=-(1/2)[cos(α+β)-cos(α-β)]•和差化积公式: sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]•其他:sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0 以及sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0部分高等内容•高等代数中三角函数的指数表示(由泰勒级数易得):sinx=[e^(ix)-e^(-ix)]/2cosx=[e^(ix)+e^(-ix)]/2tanx=[e^(ix)-e^(-ix)]/[^(ix)+e^(-ix)]泰勒展开有无穷级数,e^z=exp(z)=1+z/1!+z^2/2!+z^3/3!+z^4/4!+…+z^n/n!+… 此时三角函数定义域已推广至整个复数集.•三角函数作为微分方程的对于微分方程组 y=-y"";y=y"""",有通解Q,可证明Q=Asinx+Bcosx,因此也可以从此出发定义三角函数.补充:由相应的指数表示我们可以定义一种类似的函数——双曲函数,其拥有很多与三角函数的类似的性质,二者相映成趣.
1.《cos与sin的转化公式 高中所有关于字母转换的数学公式,就比如sin=sinAcosB+cosAsinB 这样的,》援引自互联网,旨在传递更多网络信息知识,仅代表作者本人观点,与本网站无关,侵删请联系页脚下方联系方式。
2.《cos与sin的转化公式 高中所有关于字母转换的数学公式,就比如sin=sinAcosB+cosAsinB 这样的,》仅供读者参考,本网站未对该内容进行证实,对其原创性、真实性、完整性、及时性不作任何保证。
3.文章转载时请保留本站内容来源地址,https://www.lu-xu.com/jiaoyu/546662.html