题目:
九年级数学二次函数公式
解答:
希望可以帮到你^-^y=ax²+bx+c(a,b,c为常数,a≠0) 补充:II.二次函数的三种表达式 一般式:y=ax²+bx+c(a,b,c为常数,a≠0) 顶点式:y=a(x-h)²+k [抛物线的顶点P(h,k)] 交点式:y=a(x-x1)(x-x2) [仅限于与x轴有交点A(x1,0)和 B(x2,0)的抛物线] 注:在3种形式的互相转化中,有如下关系:h=-b/2a k=(4ac-b²)/4a x1,x2=(-b±√b²-4ac)/2a III.二次函数的图象 在平面直角坐标系中作出二次函数y=x²的图象,可以看出,二次函数的图象是一条抛物线.IV.抛物线的性质 1.抛物线是轴对称图形.对称轴为直线 x = -b/2a.对称轴与抛物线唯一的交点为抛物线的顶点P.特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0) 2.抛物线有一个顶点P,坐标为 P [ -b/2a ,(4ac-b²)/4a ].当-b/2a=0时,P在y轴上;当Δ= b²-4ac=0时,P在x轴上.3.二次项系数a决定抛物线的开口方向和大小.当a>0时,抛物线向上开口;当a<0时,抛物线向下开口.|a|越大,则抛物线的开口越小.4.一次项系数b和二次项系数a共同决定对称轴的位置.当a与b同号时(即ab>0),对称轴在y轴左; 当a与b异号时(即ab<0),对称轴在y轴右.5.常数项c决定抛物线与y轴交点.抛物线与y轴交于(0,c) 6.抛物线与x轴交点个数 Δ= b²-4ac>0时,抛物线与x轴有2个交点.Δ= b²-4ac=0时,抛物线与x轴有1个交点.Δ= b²-4ac<0时,抛物线与x轴没有交点.V.二次函数与一元二次方程 特别地,二次函数(以下称函数)y=ax²+bx+c,当y=0时,二次函数为关于x的一元二次方程(以下称方程),即ax²+bx+c=0 此时,函数图象与x轴有无交点即方程有无实数根.函数与x轴交点的横坐标即为方程的根.解题时候可以用得着啊!转换以后可以把题目变简单些,有些东西一目了然.
1.《二次函数公式 九年级数学二次函数公式》援引自互联网,旨在传递更多网络信息知识,仅代表作者本人观点,与本网站无关,侵删请联系页脚下方联系方式。
2.《二次函数公式 九年级数学二次函数公式》仅供读者参考,本网站未对该内容进行证实,对其原创性、真实性、完整性、及时性不作任何保证。
3.文章转载时请保留本站内容来源地址,https://www.lu-xu.com/jiaoyu/559084.html