当前位置:首页 > 教育

三角形旁心 三角形的面积公式是什么

有很多学生想知道三角形面积公式有哪些,下面小编为大家总结整理了三角形面积公式大全,希望对大家有所帮助。

三角形五心定理

三角形的重心,外心,垂心,内心和旁心称之为三角形的五心。三角形五心定理是指三角形重心定理,外心定理,垂心定理,内心定理,旁心定理的总称。

一、三角形重心定理

三角形的三条边的中线交于一点。该点叫做三角形的重心。三中线交于一点可用燕尾定理证明,十分简单。(重心原是一个物理概念,对于等厚度的质量均匀的三角形薄片,其重心恰为此三角形三条中线的交点,重心因而得名)

重心的性质:

1、重心到顶点的距离与重心到对边中点的距离之比为2∶1。

2、重心和三角形3个顶点组成的3个三角形面积相等。即重心到三条边的距离与三条边的长成反比。

3、重心到三角形3个顶点距离的平方和最小。

4、在平面直角坐标系中,重心的坐标是顶点坐标的算术平均数,即其重心坐标为((X1+X2+X3)/3,(Y1+Y2+Y3)/3。

二、三角形外心定理

三角形外接圆的圆心,叫做三角形的外心。

外心的性质:

1、三角形的三条边的垂直平分线交于一点,该点即为该三角形外心。

2、若O是△ABC的外心,则∠BOC=2∠A(∠A为锐角或直角)或∠BOC=360°-2∠A(∠A为钝角)。

3、当三角形为锐角三角形时,外心在三角形内部;当三角形为钝角三角形时,外心在三角形外部;当三角形为直角三角形时,外心在斜边上,与斜边的中点重合。

4、计算外心的坐标应先计算下列临时变量:d1,d2,d3分别是三角形三个顶点连向另外两个顶点向量的点乘。c1=d2d3,c2=d1d3,c3=d1d2;c=c1+c2+c3。重心坐标:(

(c2+c3)/2c,(c1+c3)/2c,(c1+c2)/2c

)。

5、外心到三顶点的距离相等

三、三角形垂心定理

三角形的三条高(所在直线)交于一点,该点叫做三角形的垂心。

垂心的性质:

1、三角形三个顶点,三个垂足,垂心这7个点可以得到6个四点圆。

2、三角形外心O、重心G和垂心H三点共线,且OG∶GH=1∶2。(此直线称为三角形的欧拉线(Eulerline))

3、垂心到三角形一顶点距离为此三角形外心到此顶点对边距离的2倍。

4、垂心分每条高线的两部分乘积相等。

定理证明

已知:ΔABC中,AD、BE是两条高,AD、BE交于点O,连接CO并延长交AB于点F

,求证:CF⊥AB

证明:

连接DE

∵∠ADB=∠AEB=90度

∴A、B、D、E四点共圆

∴∠ADE=∠ABE

∵∠EAO=∠DAC

∠AEO=∠ADC

∴ΔAEO∽ΔADC

∴AE/AO=AD/AC

∴ΔEAD∽ΔOAC

∴∠ACF=∠ADE=∠ABE

又∵∠ABE+∠BAC=90度

∴∠ACF+∠BAC=90度

∴CF⊥AB

因此,垂心定理成立!

四、三角形内心定理

三角形内切圆的圆心,叫做三角形的内心。

内心的性质:

1、三角形的三条内角平分线交于一点。该点即为三角形的内心。

2、直角三角形的内心到边的距离等于两直角边的和减去斜边的差的二分之一。

3、P为ΔABC所在平面上任意一点,点I是ΔABC内心的充要条件是:向量PI=(a×向量PA+b×向量PB+c×向量PC)/(a+b+c).

4、O为三角形的内心,A、B、C分别为三角形的三个顶点,延长AO交BC边于N,则有AO:ON=AB:BN=AC:CN=(AB+AC):BC

五、三角形旁心定理

三角形的旁切圆(与三角形的一边和其他两边的延长线相切的圆)的圆心,叫做三角形的旁心。

旁心的性质:

1、三角形一内角平分线和另外两顶点处的外角平分线交于一点,该点即为三角形的旁心。

2、每个三角形都有三个旁心。

3、旁心到三边的距离相等。

如图,点M就是△ABC的一个旁心。三角形任意两角的外角平分线和第三个角的内角平分线的交点。一个三角形有三个旁心,而且一定在三角形外。

附:三角形的中心:只有正三角形才有中心,这时重心,内心,外心,垂心,四心合一。

1.《三角形旁心 三角形的面积公式是什么》援引自互联网,旨在传递更多网络信息知识,仅代表作者本人观点,与本网站无关,侵删请联系页脚下方联系方式。

2.《三角形旁心 三角形的面积公式是什么》仅供读者参考,本网站未对该内容进行证实,对其原创性、真实性、完整性、及时性不作任何保证。

3.文章转载时请保留本站内容来源地址,https://www.lu-xu.com/jiaoyu/588132.html

上一篇

不爱学习 高中生不爱学习怎么办

下一篇

春日古诗的意思 春日这首诗是什么意思啊

勾股定理常用11个公式 勾股定理的逆定理 常用的11公式是什么

勾股定理常用11个公式 勾股定理的逆定理 常用的11公式是什么

勾股定理大家都非常熟悉,在高中学习数学的时候经常用到,那么勾股定理的逆定理是什么,来看一下!勾股定理的逆定理如果三角形两条边的平方和等于第三边的平方,那么这个三角形就是直角三角形。最长边所对的角为...

移动三根火柴变成五个三角形 9根火柴棒摆成的3个三角形,移动其中的3根,使它变成5个三角形?

题目:9根火柴棒摆成的3个三角形,移动其中的3根,使它变成5个三角形?解答:大三角中间摆一个倒置的小三角.大三角用6根,小三角三根,一共五个三角形...

三角形的螺丝拆法妙招 三角形的螺丝拆法妙招是什么

  • 三角形的螺丝拆法妙招 三角形的螺丝拆法妙招是什么
  • 三角形的螺丝拆法妙招 三角形的螺丝拆法妙招是什么
  • 三角形的螺丝拆法妙招 三角形的螺丝拆法妙招是什么

互逆定理 互逆命题与互逆定理

题目:互逆命题与互逆定理解答:互逆命题在两个命题中,如果第一个命题的题设是第二个命题的结论,而第一个命题的结论是第二个命题的题设,那么这两个命题叫做互逆命题,如果把其中一个叫做原命题,那么另一个叫...

三角螺丝怎么拆 三角形螺丝怎么拆

  • 三角螺丝怎么拆 三角形螺丝怎么拆
  • 三角螺丝怎么拆 三角形螺丝怎么拆
  • 三角螺丝怎么拆 三角形螺丝怎么拆
三点共线定理 三点共线有什么性质

三点共线定理 三点共线有什么性质

三点共线定理:若oc=λoa+μob ,且λ+μ=1 ,则a、b、c三点共线(与证明无关),在向量中应用是向量加法满足平行四边形法则与三角形法则,减法则可以转换为加法a-b=a+(-b)。三点共线...

垂心的性质 三角形垂心有什么性质

垂心的性质 三角形垂心有什么性质

垂心是三条高的交点,它能构成很多直角三角形相似。锐角三角形的垂心必在形内,钝角三角形的垂心必在形外,直角三角形的垂心就是直角顶点.三角形上作三高,三高必于垂心交.高线分割三角形,出现直角三对整,直...

什么是重心 重心是什么的交点有什么性质

什么是重心 重心是什么的交点有什么性质

重心是三角形三边中线的交点。重心到顶点的距离与重心到对边中点的距离之比为2:1,重心和三角形3个顶点组成的3个三角形面积相等,重心到三角形3个顶点距离的平方和最小。三角形重心定义及性质证明三角形重...