结构方程模型 结构方程模型是一门基于统计分析技术的研究方法学,它主要用于解决社会科学研 究中的多变量问题,用来处理复杂的多变量研究数据的探究与分析。在社会科学及经济、 市场、管理等研究领域,有时需处理多个原因、多个结果的关系,或者会碰到不可直接 观测的变量,这些都是传统的统计方法不能很好解决的问题。SEM 能够对 抽象的概念进行估计与检定,而且能够同时进行潜在变量的估计与复杂自变量/因变量 预测模型的参数估计。 结构方程模型是一种非常通用的、主要的线形统计建模技术,广泛应用于心理学、经济 学、社会学、行为科学等领域的研究。实际上,它是计量经济学、计量社会学与计量心理学 等领域的统计分析方法的综合。多元回归、因子分析和通径分析等方法都只是结构方程模型 中的一种特例。 结构方程模型是利用联立方程组求解,它没有很严格的假定限制条件,同时允许自变量 和因变量存在测量误差。在许多科学领域的研究中,有些变量并不能直接测量。实际上,这 些变量基本上是人们为了理解和研究某类目的而建立的假设概念,对于它们并不存在直接测 量的操作方法。人们可以找到一些可观察的变量作为这些潜在变量的“标识”,然而这些潜 在变量的观察标识总是包含了大量的测量误差。在统计分析中,即使是对那些可以测量的变 量,也总是不断受到测量误差问题的侵扰。自变量测量误差的发生会导致常规回归模型参数 估计产生偏差。虽然传统的因子分析允许对潜在变量设立多元标识,也可处理测量误差,但 是,它不能分析因子之间的关系。只有结构方程模型即能够使研究人员在分析中处理测量误 差,又可分析潜在变量之间的结构关系。 与传统的回归分析不同,结构方程分析能同时处理多个因变量,并可比较及评价不 同的理论模型。与传统的探索性因子分析不同,在结构方程模型中,我们可以提出一个 特定的因子结构,并检验它是否吻合数据 。通过结构方程多组分析,我们可以了解不同 组别内各变量的关系是否保持不变,各因子的均值是否有显著差异。 ” 已经有多种软件可以处理 SEM,包括:LISREL,AMOS, EQS, Mplus. 结构方程模型包括测量方程和结构方程,以ACSI 模型为例,具体形式如下: 测量方程 y=Λ yη +ε y , x=Λ xξ +ε x=用户,本站只是中间服务平台,本站所有文档下载所得的收益归上传人所有【成交的100%】。原创力文档是网络服务平台方,若您的权利被侵害,侵权客服QQ:3005833200 电话:19940600175 欢迎举报,上传者QQ群:784321556
1.《结构方程 结构方程模型及经典案例(一看就懂)》援引自互联网,旨在传递更多网络信息知识,仅代表作者本人观点,与本网站无关,侵删请联系页脚下方联系方式。
2.《结构方程 结构方程模型及经典案例(一看就懂)》仅供读者参考,本网站未对该内容进行证实,对其原创性、真实性、完整性、及时性不作任何保证。
3.文章转载时请保留本站内容来源地址,https://www.lu-xu.com/jiaoyu/159410.html