二次函数顶点坐标公式是y=a(x-h)^2+k k(a≠0,a、h、k为常数)。接下来小编给大家分享二次函数顶点坐标公式推导过程,供参考。
二次函数顶点坐标公式及推导过程二次函数的顶点式:y=a(x-h)^2+k k(a≠0,a、h、k为常数),顶点坐标为(h,k)
推导过程:
y=ax^2+bx+c
y=a(x^2+bx/a+c/a)
y=a(x^2+bx/a+b^2/4a^2+c/a-b^2/4a^2)
y=a(x+b/2a)^2+c-b^2/4a
y=a(x+b/2a)^2+(4ac-b^2)/4a
对称轴x=-b/2a
顶点坐标(-b/2a,(4ac-b^2)/4a)
二次函数一般式及图像关系二次函数的一般式为:y=ax²+bx+c(a≠0)。
a、b、c值与图像关系
a>0时,抛物线开口向上;a<0时,抛物线开口向下。
当抛物线对称轴在y轴左侧时a,b同号,当抛物线对称轴在y轴右侧时a,b异号。
c>0时,抛物线与y轴交点在x轴上方;c<0时,抛物线与y轴交点在x轴下方。
a=0时,此图像为一次函数。
b=0时,抛物线顶点在y轴上。
c=0时,抛物线在x轴上。
当抛物线对称轴在y轴左侧时a,b同号,当抛物线对称轴在y轴右侧时a,b异号。
二次函数的性质(1)二次函数的图像是抛物线,抛物线是轴对称图形。对称轴为直线x=-b/2a。
(2)二次项系数a决定抛物线的开口方向和大小。当a>0时,抛物线开口向上;当a<0时,抛物线开口向下。|a|越大,则抛物线的开口越小;|a|越小,则抛物线的开口越大。
(3)一次项系数b和二次项系数a共同决定对称轴的位置。
一次项系数b和二次项系数a共同决定对称轴的位置。当a与b同号时(即ab>0),对称轴在y轴左侧;当a与b异号时(即ab<0),对称轴在y轴右侧。
(4)常数项c决定抛物线与y轴交点。抛物线与y轴交于(0,c)。
1.《抛物线的顶点坐标公式 二次函数顶点坐标公式推导过程》援引自互联网,旨在传递更多网络信息知识,仅代表作者本人观点,与本网站无关,侵删请联系页脚下方联系方式。
2.《抛物线的顶点坐标公式 二次函数顶点坐标公式推导过程》仅供读者参考,本网站未对该内容进行证实,对其原创性、真实性、完整性、及时性不作任何保证。
3.文章转载时请保留本站内容来源地址,https://www.lu-xu.com/jiaoyu/402651.html