拐点不一定是二阶导数为零的点。函数y=f(x)的图形的凹凸分界点称为图形的拐点。拐点只可能是两种点:二阶导数为零的点或二阶导数不存在的点。
原因函数y=f(x)的图形的凹凸分界点称为图形的拐点。拐点只可能是两种点:二阶导数为零的点或二阶导数不存在的点。
拐点的判别定理1:若在x0处f""(x)=0(或f""(x)不存在),当x变动经过x0时,f""(x)变号,则(x0,f""(x0))为拐点。
拐点的判别定理2:若f(x)在x0点的某邻域内有三阶导数,且f""(x0)=0,f"""(x0)≠0,则(x0,f""(x0))为拐点。
原函数导数的导数,将原函数进行二次求导。一般的,函数y=f(x)的导数y‘=f’(x)仍然是x的函数,则y’=f’(x)的导数叫做函数y=f(x)的二阶导数。在图形上,它主要表现函数的凹凸性。
拐点的求法可以按下列步骤来判断区间I上的连续曲线y=f(x)的拐点:
⑴求f""(x);
⑵令f""(x)=0,解出此方程在区间I内的实根,并求出在区间I内f""(x)不存在的点;
⑶对于⑵中求出的每一个实根或二阶导数不存在的点X0检查f""(x)在X0左右两侧邻近的符号,那么当两侧的符号相反时,点(X0,f(X0))是拐点,当两侧的符号相同时,点(X0,f(X0))不是拐点。
1.《0的导数 拐点是二阶导数为零的点吗》援引自互联网,旨在传递更多网络信息知识,仅代表作者本人观点,与本网站无关,侵删请联系页脚下方联系方式。
2.《0的导数 拐点是二阶导数为零的点吗》仅供读者参考,本网站未对该内容进行证实,对其原创性、真实性、完整性、及时性不作任何保证。
3.文章转载时请保留本站内容来源地址,https://www.lu-xu.com/jiaoyu/433267.html