当前位置:首页 > 教育

矩阵的秩怎么求 矩阵的秩怎么求

矩阵的秩计算公式是A=(aij)m×n。矩阵的秩是线性代数中的一个概念。在线性代数中,一个矩阵A的列秩是A的线性独立的纵列的极大数,通常表示为r(A),rk(A)或rank A。

矩阵的秩求解方法

矩阵的秩计算公式:A=(aij)m×n

矩阵的秩是线性代数中的一个概念。在线性代数中,一个矩阵A的列秩是A的线性独立的纵列的极大数,通常表示为r(A),rk(A)或rankA。

在线性代数中,一个矩阵A的列秩是A的线性独立的纵列的极大数目。类似地,行秩是A的线性无关的横行的极大数目。即如果把矩阵看成一个个行向量或者列向量,秩就是这些行向量或者列向量的秩,也就是极大无关组中所含向量的个数。

1.《矩阵的秩怎么求 矩阵的秩怎么求》援引自互联网,旨在传递更多网络信息知识,仅代表作者本人观点,与本网站无关,侵删请联系页脚下方联系方式。

2.《矩阵的秩怎么求 矩阵的秩怎么求》仅供读者参考,本网站未对该内容进行证实,对其原创性、真实性、完整性、及时性不作任何保证。

3.文章转载时请保留本站内容来源地址,https://www.lu-xu.com/jiaoyu/447744.html

上一篇

经济学家郎咸平 中国像郎咸平、林毅夫、吴敬琏这样的有良心的经济学家、真正的经济学家还有谁?像厉以宁这样XX的还有谁?

下一篇

鹅鹅鹅曲项向天歌 鹅鹅鹅,曲项向天歌.这首诗该如何读?

法向量 平面的法向量怎么求

法向量 平面的法向量怎么求

建立恰当的直角坐标系;设平面法向量n=(x,y,z);在平面内找出两个不共线的向量,记为a=(a1,a2, a3),b=(b1,b2,b3);根据法向量的定义建立方程组n·a=0与n·b=0;解方程组,取其中一组解即可。平面法向量的具体步骤(待定系数法)1、建立恰当的直角坐标系2、设平面法向量n=(x,y,z)3、在平面内找出两个不共线的向量,记...

向量叉乘的几何意义 向量叉乘的几何意义

向量叉乘的几何意义 向量叉乘的几何意义

几何意义:叉积的长度|a×b|可以解释成这两个叉乘向量a,b共起点时,所构成平行四边形的面积。据此有:混合积[abc]=(a×b)·c,可以得到以a,b,c为棱的平行六面体的体积。向量积(矢积)与数量积(标积)的区别名称标积/内积/数量积/点积矢积/外积/向量积/叉积运算式(a,b和c粗体字,表示向量)a·b=|a||b|·cosθa×b=c,其...

向量的内积 向量内积怎么算

向量的内积 向量内积怎么算

向量内积的运算:(x·y)=(y·x);(x+y)·z=(x·z)+(y·z);(kx·y)=k(x·y);(x·x)=x1^2+......+xn^2>=0等号成立当且仅当x=0。运算法则...

向量内积 向量内积怎么算

向量内积 向量内积怎么算

向量内积的运算:(x·y)=(y·x);(x+y)·z=(x·z)+(y·z);(kx·y)=k(x·y);(x·x)=x1^2+......+xn^2>=0等号成立当且仅当x=0。运算法则...

方向向量怎么求 方向向量怎么求

方向向量怎么求 方向向量怎么求

已知直线l:ax+by+c=0,则直线l的方向向量为s=(-b,a)或(b,-a);若直线l的斜率为k,则l的一个方向向量为s=(1,k);若A(x1,y1),B(x2,y2),则AB所在直线的一个方向向量为s=(x2-x1,y2-y1)。方向向量的求解只要给定直线,便可构造两个方向向量(以原点为起点)。(1)即已知直线l:ax+by+c=0,则...

回归直线方程公式详解 线性回归直线方程的系数公式是什么?

题目:线性回归直线方程的系数公式是什么?解答:http://1.com/d/uploads2/2020-10/17/zsrnb03ynf4 />希望对你有帮助...

平面向量的坐标运算 平面向量的坐标运算

平面向量的坐标运算 平面向量的坐标运算

平面向量的坐标运算:AB+BC=AC;AB-AC=CB;(λμ)a=λ(μa);(λ+μ)a= λa+μa;a·a=|a|²;a·b=b·a等。坐标运算向量的数量积的性质(1)a·a=∣a∣²≥0(2)a·b=b·a(3)k(ab)=(ka)b=a(kb)(4)a·(b+c)=a·b+a·c(5)a·b=0a⊥b(6)a=kba//b(7)e1·...

高中线性回归方程公式 高中线性回归方程公式

高中线性回归方程公式 高中线性回归方程公式

高中线性回归方程公式:b=(x1y1+x2y2+...xnyn-nXY)/(x1+x2+...xn-nX)。线性回归方程是利用数理统计中的回归分析,来确定两种或两种以上变数间相互依赖的定量关系的一种统计分析方法之一。线性回归方程的公式线性回归方程求解方法线性回归模型经常用最小二乘逼近来拟合,但他们也可能用别的方法来拟合,比如用最小化“拟合缺陷”在...