初中数学,让学生头痛的很大一部分就是三角函数!很多同学对与三角函数中正弦、余弦、正切、余切中的公式容易混淆,做题的时候不能够运用正确的公式,以至于三角函数题成为了他们失分的重要部分。
最近也有不少童鞋在微信上问三角函数这一块。为了帮助同学们能够熟练掌握这一部分知识,今天就来介绍下三角函数以及归纳一些知识点。
一
锐角三角函数定义
锐角角A的正弦(sin),余弦(cos)和正切(tan),余切(cot)以及正割(sec),余割(csc)都叫做角A的锐角三角函数。
正弦(sin):对边比斜边,即sinA=a/c
余弦(cos):邻边比斜边,即cosA=b/c
正切(tan):对边比邻边,即tanA=a/b
余切(cot):邻边比对边,即cotA=b/a
正割(sec):斜边比邻边,即secA=c/b
余割(csc):斜边比对边,即cscA=c/a
二
特殊角三角函数值
三
三角函数关系
互余角的关系
sin(90°-α)=cosα, cos(90°-α)=sinα,
tan(90°-α)=cotα, cot(90°-α)=tanα.
平方关系
sin^2(α)+cos^2(α)=1
tan^2(α)+1=sec^2(α)
cot^2(α)+1=csc^2(α)
积的关系
sinα=tanα·cosα
cosα=cotα·sinα
tanα=sinα·secα
cotα=cosα·cscα
secα=tanα·cscα
cscα=secα·cotα
倒数关系
tanα·cotα=1
sinα·cscα=1
cosα·secα=1
四
锐角三角函数公式
两角和差公式
sin(A+B) = sinAcosB+cosAsinB
sin(A-B) = sinAcosB-cosAsinB
cos(A+B) = cosAcosB-sinAsinB
cos(A-B) = cosAcosB+sinAsinB
tan(A+B) = (tanA+tanB)/(1-tanAtanB)
tan(A-B) = (tanA-tanB)/(1+tanAtanB)
cot(A+B) = (cotAcotB-1)/(cotB+cotA)
cot(A-B) = (cotAcotB+1)/(cotB-cotA)
三角和的公式
sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ
cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ
tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)
倍角公式
tan2A = 2tanA/(1-tan² A)
Sin2A=2SinA•CosA
Cos2A = Cos^2 A--Sin² A =2Cos² A-1 =1-2sin^2 A
三倍角公式
sin3A = 3sinA-4(sinA)³;
cos3A = 4(cosA)³ -3cosA
tan3a = tan a • tan(π/3+a)• tan(π/3-a)
半角公式
sin(α/2)=±√((1-cosα)/2)
cos(α/2)=±√((1+cosα)/2)
tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinα
积化和差公式
sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]
cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]
cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]
sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]
和差化积公式
sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]
sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]
cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]
cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]
万能公式
sin(a) = [2tan(a/2)] / {1+[tan(a/2)]²}
cos(a) = {1-[tan(a/2)]^2} / {1+[tan(a/2)]²}
tan(a) = [2tan(a/2)]/{1-[tan(a/2)]^2}
推导公式
tanα+cotα=2/sin2α
tanα-cotα=-2cot2α
1+cos2α=2cos^2α
1-cos2α=2sin^2α
1+sinα=(sinα/2+cosα/2)^2
五
三角形面积定理
六
三角函数的图象性质
1.《初中数学|三角函数知识点&公式全归纳》援引自互联网,旨在传递更多网络信息知识,仅代表作者本人观点,与本网站无关,侵删请联系页脚下方联系方式。
2.《初中数学|三角函数知识点&公式全归纳》仅供读者参考,本网站未对该内容进行证实,对其原创性、真实性、完整性、及时性不作任何保证。
3.文章转载时请保留本站内容来源地址,https://www.lu-xu.com/guoji/16998.html