1、C'=0(C为常数);2、(Xn)'=nX(n-1) (n∈R);3、(sinX)'=cosX;4、(cosX)'=-sinX;5、(aX)'=aXIna (ln为自然对数);6、(logaX)'=1/(Xlna) (a>0,且a≠1)。
7、(tanX)'=1/(cosX)2;=(secX)2;8、(cotX)'=-1/(sinX)2=-(cscX)2;9、(secX)'=tanX secX;10、(cscX)'=-cotX cscX。
求导公式一览表
导数存在的条件:函数在该点的左右导数存在且相等,不能证明这点导数存在。只有左右导数存在且相等,并且在该点连续,才能证明该点可导。
导数运算法则
减法法则:(f(x)-g(x))'=f(x)-g’(x)。
加法法则:(f(x)+g(x))’=f’(x)+g’(x)。
乘法法则:(f(x)g(x))'=f’(x)g(x)+f(x)g'(x)。
除法法则:(g(x)/f(x))’=(g'(x)f(x)-f'(x)g(x))/(f(x))^2。
1.《求导公式 三次函数求导公式大全》援引自互联网,旨在传递更多网络信息知识,仅代表作者本人观点,与本网站无关,侵删请联系页脚下方联系方式。
2.《求导公式 三次函数求导公式大全》仅供读者参考,本网站未对该内容进行证实,对其原创性、真实性、完整性、及时性不作任何保证。
3.文章转载时请保留本站内容来源地址,https://www.lu-xu.com/jiaoyu/2286632.html