一、网卡
1.概念
网卡是一种计算机硬件,旨在使计算机能够在计算机网络上通信。因为有MAC地址,所以属于OSI模型的第2层。可以通过电缆或无线相互连接。
每个网卡都有一个唯一的48位串行编号,称为MAC地址,并记录在卡的ROM中。网络中的每台计算机都必须有唯一的MAC地址。生产的两张网卡没有相同的地址。这是因为电子电子工程师协会(IEEE)负责为网络接口控制器(网卡)供应商分配唯一的MAC地址。
网卡包括处理器和内存(包括RAM和ROM)。网卡和LAN之间的通信通过电缆或双绞线以串行传输方式进行。网卡和计算机之间的通信通过计算机主板上的I/O总线并行传输。
因此,网卡的一个重要功能是串行/并行转换。由于网络上的数据速度和计算机总线上的数据速度不同,因此必须在网卡上安装缓存数据的内存芯片。
网卡以前作为扩展卡插入计算机总线,但价格低廉,以太网标准普遍,大多数新计算机在主板上集成了网络接口。
这些主板将以太网功能集成到主板芯片中,或使用通过PCI(或更新的PCI-Express总线)连接到主板的低成本网卡。
除非需要多个接口或使用其他类型的网络,否则不再需要单独的网卡。更新的主板也可能内置双网络(以太网)接口。
2.主要功能
1.数据封装和解除密封传输时,将第一个和尾部添加到上一层传递的数据中,成为以太网的帧。接收时,剥离以太网的第一帧和尾部,并将它们发送到上一层
2、链路管理主要通过CSMA/CD(CARRIER SENSE Multiple Access With COLISION Detection,碰撞检测载波接收多路复用)协议进行。
3、数据编码和解码,即曼彻斯特编码和解码。其中曼彻斯特码(也称为数字双向码、分相码或相位编码(PE))是物理层用于编码同步比特流的时钟和数据的常用二进制码行编码方法之一。在通信技术中,是指将传输的比特流中的数据和定时信号结合在一起的代码。常用于以太网通信、列车总线控制、产业总线等领域。
3.分类
按总线接口类型划分为网卡的总线接口类型,通常将Bai划分为ISA接口卡、PCI接口卡和服务器使用的PCI-X总线接口类型的网卡。笔记本电脑使用的网卡是PCMCIA接口类型。(1)ISA总线网卡(2)PCI总线网卡(3)PCI-X总线网卡(4)PCMCIA总线网卡(5)USB总线接口卡可按网络接口划分。不仅可以按网卡的总线接口类型划分,还可以按网卡的网络接口类型划分。网卡最终连接到网络,因此必须有接口,以便网线能够连接到其他计算机网络设备。不同的网络接口适用于不同的网络类型。目前常见的接口主要有以太网的RJ-45接口、细同轴电缆的BNC接口、粗同轴电气AUI接口、FDI接口、ATM接口等。此外,一些网卡还为更广泛的应用环境提供了两种或多种接口类型。例如,某些网卡同时提供RJ-45、BNC接口或AUI接口。(1)RJ-45接口卡(2)BNC接口卡(3)AUI接口卡(4)FDDI接口卡(5)ATM接口卡按带宽进行了区分,随着网络技术的发展,网络带宽也在提高,但随着带宽的不同,适用的环境也不同。(1)10Mbps网卡(2)100Mbps网卡(3)10Mbps/100Mbps网卡(4)1000Mbps以太网卡2、DM9000A
DM9000芯片由DAVICOM制造,DM9000A是一款单芯片快速以太网控制器,具有完全集成的性价比、更少的针脚和通用处理器接口。
10/100M PHY和1个4K双字SRAM。专为低功耗和高性能而设计,提供I/o端口支持
3.3V 与 5V 容限值。DM9000A 为适应各种处理器,提供了 8 位、16 位数据接口访问内部存储器。
DM9000A物理协议层接口完全支持使用 10MBps 下 3 类、4 类、5 类非屏蔽双绞线和 100MBps 下 5类非屏蔽双绞线。这是完全遵照 IEEE 802.3u 标准。
它的自动协商功能将自动完成 DM9000AE配置以使其发挥出最佳性能。
它还支持 IEEE 802.3x 全双工流量控制。
1. 模块图
图1 DM9000内部结构框架
EEPROM Interface接口用于存放mac地址,Internal SRAM用于存放收发数据,MII部分把MAC部分与PHY部分连接起来通信,AUTO-MDIX用于自适应10/100M网络,在物理层上,MAC在PHY之下。
2. 引脚分析
(#:表示低电平有效)
开发板FS4412的网卡DM9000A连接到了SROM控制器,下面我们分析数据线、地址线和信号线连接
1) SD0~15
SD0~15: 16位数据线连接到引脚BUF_B_Xm0DATA[0:15],由CMD引脚决定访问类型。
可见数据和地址线都连接到了SOC的XM0上。
数据线和信号线对应的SROMC的引脚如上图。
2) CMD dm9000 外围电路 转换电路 soc
CMD--------BUF_B_Xm0ADDR2--------Xm0ADDR2-----Xm0ADDR2
如下图所示: CMD: 命令线,当CMD为高,表示SD 传输的是数据,CMD为低表示传输的是地址,接在exynos4412的BUF_B_Xm0ADDR2上,可见CMD复用了地址线Xm0ADDR2引脚。
3) IOR#、IOW# dm9000 外围电路 转换电路 soc
IOR--------BUF_Xm0OEn--------Xm0OEn-----Xm0OEn
IOW--------BUF_Xm0WEn--------Xm0WEn-----Xm0WEn
4) CS# dm9000 外围电路 转换电路 soc
CS--------BUF_Xm0cs1--------Xm0CS1-----Xm0CSn1
CS#:片选,放在exynos4412的Bank1的片选上面,内存基地址是0x05000000。
我们的DM9000A是放在exynos4412的Bank1(0X05000000)的片选上面。
而DM9000的CMD引脚接在Bank1的LADDR2上面
读写DM9000A的地址 CMD拉低, 此时向0X05000000地址上读写的数据便是DM9000A的内部寄存器地址
读写DM9000A的数据 CMD拉高,此时向0X05000000+4地址上读写的数据便是DM9000A的数据
设置exynos4412的bank1的硬件位宽,时序,因为不同的硬件,涉及的数据收发都不同。
5) INT#
中断线DM9000_IRQ通过U8转接到引脚XEINT6
由上图可知中断引脚INT,接在exynos4412的GPX0_6脚上。 uboot中的DM9000A的驱动没有用到中断。
3. 复用GPIO引脚
XM0引脚复用了GPIO引脚,所以需要初始化对应的GPIO引脚来使能SROMC。
1) GPY0CON
2) GPY1CON
3)GPY3CON
4) GPY5CON
5) GPY6CON
三、SROM 控制器
1. 概念
SROM是高速存储器,Cache技术就是通过在DROM和CPU之间插入一小块SROM来减小CPU和存储之间的速度差异的。
EXYNOS 4412包含了SROM控制器,特性如下:
- 外部 8/16位 NOR Flash/PROM/ SRAM memory.
- 4组内存,每块内存最多16 MB
首先我们要初始化 exynos4412的 SROM 控制器,设置总线宽度和相关时序。
针对 SROM 控制器的每一个 bank 只有2 个寄存器: SROM_BW 和 SROM_BC。
2. SROM_BW
在 SROM_BW 寄存器中,我们只关心与 bank1 相关的域。
上面分析过, DM9000A 的 16 根数据线全部接在 exynos 4412的数据线上,所以 DataWidth1 设置为 1; DM9000A 的地址是按字节存取的,所以 AddrMode1 设置为 1; 通过查看原理图,没有使用 Xm0WAITn和 Xm0BEn 引脚; 所以 WaitEnable1 和 ByteEnable1 均设置为 0。
SROM_BW[7:4]=0x3
3. SROM_BC1
SROM 控制器读时序和 DM9000A 的读时序主要通过SROM_BCn控制寄存器设置。
设置这些时序之前,首先来看DM9000A芯片手册时序图和exynos4412的时序图
详尽时序分析:,内存控制器使用HCLK作为时钟,在HCLK为100MHz时,1个clock大约为10ns。 信号值的设定如下:
信号 含义 最低时间(ns) Tacs 地址发出后等多长时间发片选, DM9000AE 中 CS 和 CMD(地址)同时发出,所以 Tacs最低为0ns 0 Tcos 发出片选信号后等多长时间发出读使能信号(nOW、 IOR),在 DM9000A 的时序图上对应 T1,最小为 0 0 Tacc 读使能信号持续时间,access cycle ,读写使能后,多久才能访问数据,在 DM9000A 的时序图上对应 T2 10 Tcoh 当DM9000A的写信号取消后,数据线上的数据还需要至少3ns才消失(nOE读写取消后,片选需要维持多长时间)在 DM9000A 的时序图中对应 T4 3 Tcah 片选结束后,地址保存时间, DM9000A 中CS和cmd同时结束,所以 Tcah=0 0 Tacp 页模式,不管 0 PMC 页模式,不管 0
从DM9000A的读写时序图中可以看出,T2+T6实际上构成了DM9000A的一个访问周期,因此还需要满足:Tacs + Tcos + Tacc + Tcoh + Tcah>= T2+T6,最终使用下面的表达式来表达: (Tacs >= 0 && Tacs <= 4) && (Tcos >= 0 && Tcos <= 4) && (Tacc >= 1 && Tacc <= 14 ) && (Tcoh >=1 && Tcoh <= 4 )
寄存器SROM_BCn (n = 0 to 3)定义如下:
故设置参考值为:
#define DM9000_Tacs (0x1) // address set-up
#define DM9000_Tcos (0x1) // chip selection set-up
#define DM9000_Tacc (0x5) // access cycle
#define DM9000_Tcoh (0x1) // chip selection hold
#define DM9000_Tah (0xC) // address holding time
#define DM9000_Tacp (0x9) // page mode access cycle
#define DM9000_PMC (0x1) // normal(1data)page mode configuration
4. SROM初始化
u-boot 已经自带了 DM9000系列网卡的驱动,在 u-boot 源码中的 driver/ne 的有一段说明:
06/03/2008 Remy Bohmer <linux@bo;
- Fixed the driver to work with DM9000A.
(check on ISR receive status bit before reading the
FIFO as described in DM9000 programming guide and
application notes)
- Added autodetect of databus width.
- Made debug code compile again.
- Adapt eth_send such that it matches the DM9000*
application notes. Needed to make it work properly
for DM9000A.
- Adapted reset procedure to match DM9000 application
notes . double reset)
- some minor code cleanups
These changes are tested with DM9000{A,EP,E} together
with a 200MHz Atmel AT91SAM9261 core
可见,2008年Remy Bohmer已经为 DM9000A 添加了驱动,但是我们仍然需要针对板子做一些修改。
前一章我们针对参考的fs4412开发板移植了DM9000A的驱动,下面我们来详细分析DM9000A驱动程序。
分析驱动涉及到以下几个文件:
arch/arm/lib
board/samsung/origen
drivers/ne
drivers/ne
include
include/config
include
ne
5. 宏定义
在include/config中需要定义DM9000A基地址和编译的宏。 其中最重要的几个宏如下:
名称 说明 值 CONFIG_DM9000_BASE DM9000A 的基地址 0x05000000 DM9000_IO DM9000A 的 INDEX 端口地址 CONFIG_DM9000_BASE DM9000_DATA DM9000A 的 DATA 端口地址 (CONFIG_DM9000_BASE + 4) CONFIG_DRIVER_DM9000 Makefile中用于控制dm9000驱动是否编译 1 CONFIG_DM9000_USE_16BIT DM9000A数据宽度 CONFIG_DM9000_NO_SROM 表示没有使用SROM 1
其中DM9000_DATA 定义为基地址+0x4,刚好把 Xm0ADDR2 拉高,即把 CMD 拉高。
查看文件drivers/net/Makefile:
从 Makefile 得知,要把 DM9000A 的驱动编译进 u-boot中,需要定义 CONFIG_DRIVER_DM9000 这个宏。
宏定义如下:
#ifdef CONFIG_CMD_NET
#define CONFIG_NET_MULTI
#define CONFIG_DRIVER_DM9000 1
#define CONFIG_DM9000_BASE 0x05000000
#define DM9000_IO CONFIG_DM9000_BASE
#define DM9000_DATA (CONFIG_DM9000_BASE + 4)
#define CONFIG_DM9000_USE_16BIT
#define CONFIG_DM9000_NO_SROM 1
#define CONFIG_ETHADDR 11:22:33:44:55:66
#define CONFIG_IPADDR 192.168.6.187
#define CONFIG_SERVERIP 192.168.6.186
#define CONFIG_GATEWAYIP 192.168.6.1
#define CONFIG_NETMASK 255.255.255.0
#endif
除此以外我们还需要添加一些 u-boot 的命令,比如 ping 命令用来检查网络是否通畅,tftp用来下载文件。
uboot通过宏来控制是否编译这些命令,include/config定义了一些宏,但是有的是undefine,我们要打开它们。
/* Command definition*/
#include <con;
#define CONFIG_CMD_PING
#define CONFIG_CMD_ELF
#define CONFIG_CMD_DHCP
#define CONFIG_CMD_MMC
#define CONFIG_CMD_FAT
#define CONFIG_CMD_NET
#undef CONFIG_CMD_NFS
#define CONFIG_CMD_HELLO
#define CONFIG_CMD_LEDA
除此之外头文件: u-boo 也列出了一些可用的命令。
#define CONFIG_CMD_BDI /* bdinfo */
#define CONFIG_CMD_BOOTD /* bootd */
#define CONFIG_CMD_CONSOLE /* coninfo */
#define CONFIG_CMD_ECHO /* echo arguments */
#define CONFIG_CMD_EDITENV /* editenv */
#define CONFIG_CMD_FPGA /* FPGA configuration Support */
#define CONFIG_CMD_IMI /* iminfo */
#define CONFIG_CMD_ITEST /* Integer (and string) test */
#ifndef CONFIG_SYS_NO_FLASH
#define CONFIG_CMD_FLASH /* flinfo, erase, protect */
#define CONFIG_CMD_IMLS /* List all found images */
#endif
#define CONFIG_CMD_LOADB /* loadb */
#define CONFIG_CMD_LOADS /* loads */
#define CONFIG_CMD_MEMORY /* md mm nm mw cp cmp crc base loop mtest */
#define CONFIG_CMD_MISC /* Misc functions like sleep etc*/
#define CONFIG_CMD_NET /* bootp, tftpboot, rarpboot */
#define CONFIG_CMD_NFS /* NFS support */
#define CONFIG_CMD_RUN /* run command in env variable */
#define CONFIG_CMD_SAVEENV /* saveenv */
#define CONFIG_CMD_SETGETDCR /* DCR support on 4xx */
#define CONFIG_CMD_SOURCE /* "source" command support */
#define CONFIG_CMD_XIMG /* Load part of Multi Image */
6. 初始化srom
在arch/arm/lib的函数board_init_r中有如下代码:
void board_init_r(gd_t *id, ulong dest_addr)
{
……
board_init(); /* Setup chipselects */
……
}
函数board_init()定义在board/samsung/origen中,我们在该函数中添加了初始化srom代码:
int board_init(void)
{
gpio1 = (struct exynos4_gpio_part1 *) EXYNOS4_GPIO_PART1_BASE;
gpio2 = (struct exynos4_gpio_part2 *) EXYNOS4_GPIO_PART2_BASE;
gd->bd->bi_boot_params = (PHYS_SDRAM_1 + 0x100UL);
#ifdef CONFIG_DRIVER_DM9000
dm9000aep_pre_init();
#endif
return 0;
}
函数dm9000aep_pre_init用来设置 SROM 控制器。
static void dm9000aep_pre_init(void)
{
unsigned int tmp;
unsigned char smc_bank_num = 1;
unsigned int smc_bw_conf=0;
unsigned int smc_bc_conf=0;
/* gpio configuration */
writel(0x00220020, 0x11000000 + 0x120);//GPY0CON
writel(0x00002222, 0x11000000 + 0x140);//GPY1CON
/* 16 Bit bus width */
writel(0x22222222, 0x11000000 + 0x180);//GPY3CON
writel(0x0000FFFF, 0x11000000 + 0x188);//GPY3PUD
writel(0x22222222, 0x11000000 + 0x1C0);//GPY5CON
writel(0x0000FFFF, 0x11000000 + 0x1C8);//GPY5PUD
writel(0x22222222, 0x11000000 + 0x1E0);//GPY6CON
writel(0x0000FFFF, 0x11000000 + 0x1E8);//GPY6PUD
smc_bw_conf &= ~(0xf<<4);
smc_bw_conf |= (1<<7) | (1<<6) | (1<<5) | (1<<4);
smc_bc_conf = ((DM9000_Tacs << 28)
| (DM9000_Tcos << 24)
| (DM9000_Tacc << 16)
| (DM9000_Tcoh << 12)
| (DM9000_Tah << 8)
| (DM9000_Tacp << 4)
| (DM9000_PMC));
exynos_config_sromc(smc_bank_num,smc_bw_conf,smc_bc_conf);
}
/*
* exynos_config_sromc() - select the proper SROMC Bank and configure the
* band width control and bank control registers
* srom_bank - SROM
* srom_bw_conf - SMC Band witdh reg configuration value
* srom_bc_conf - SMC Bank Control reg configuration value
*/
void exynos_config_sromc(u32 srom_bank, u32 srom_bw_conf, u32 srom_bc_conf)
{
unsigned int tmp;
struct exynos_sromc *srom = (struct exynos_sromc *)(EXYNOS4412_SROMC_BASE);
/* Configure SMC_BW register to handle proper SROMC
* bank */
tmp = srom->bw;
tmp &= ~(0xF << (srom_bank * 4));
tmp |= srom_bw_conf;
srom->bw = tmp;
/* Configure SMC_BC
* register */
srom->bc[srom_bank] = srom_bc_conf;
}
四、DM9000A驱动分析
DM9000A所能支持的功能非常的多,驱动的实现相对比较复杂,搞清楚裸机的网卡驱动,我们再去学习Linux内核的DM9000驱动就相对容易一些。 本节将详细讲解DM9000A网卡的数据的收发操作的流程。
1. 相关结构体
struct board_info
/* Structure/enum declaration ------------------------------- */
typedef struct board_info {
u32 runt_length_counter; /* counter: RX length < 64byte */
u32 long_length_counter; /* counter: RX length > 1514byte */
u32 reset_counter; /* counter: RESET */
u32 reset_tx_timeout; /* RESET caused by TX Timeout */
u32 reset_rx_status; /* RESET caused by RX Statsus wrong */
u16 tx_pkt_cnt;
u16 queue_start_addr;
u16 dbug_cnt;
u8 phy_addr;
u8 device_wait_reset; /* device state */
unsigned char srom[128];
void (*outblk)(volatile void *data_ptr, int count);
void (*inblk)(void *data_ptr, int count);
void (*rx_status)(u16 *RxStatus, u16 *RxLen);
struct eth_device netdev;
} board_info_t;
static board_info_t dm9000_info;
该结构体是用来维护DM9000系列网卡的结构体,所有和网卡DM9000A信息都保存到该结构体中。 struct eth_device struct board_info中有一个重要的成员 netdev,该成员是uboot提供的标准的统一的网卡设备接口。
struct eth_device {
char name[16];
unsigned char enetaddr[6];
int iobase;
int state;
int (*init) (struct eth_device *, bd_t *);
int (*send) (struct eth_device *, void *packet, int length);
int (*recv) (struct eth_device *);
void (*halt) (struct eth_device *);
#ifdef CONFIG_MCAST_TFTP
int (*mcast) (struct eth_device *, u32 ip, u8 set);
#endif
int (*write_hwaddr) (struct eth_device *);
struct eth_device *next;
int index;
void *priv;
};
该结构体维护了操作网卡的回调函数等信息,我们只需要把网口的收发数据操作封装到对应的回调函数中,然后注册到系统即可。
2. 网卡注册/注销
进入到arch/arm/lib 中的 board_init_r 函数:
665 #if defined(CONFIG_CMD_NET)
666 puts("Net: ");
667 eth_initialize(gd->bd);
668 #if defined(CONFIG_RESET_PHY_R)
669 debug("Reset Ethernet PHY\n");
670 reset_phy();
671 #endif
如果定义了 CONFIG_CMD_NET,就调用 eth_initialize(gd->bd)进行网卡初始化。
这个宏在include 中定义,这个头文件又被单板配置文件 include/config 所包含。
eth_initialize 函数在 ne 中定义,下面是该函数部分代码:
308 /*
309 * If board-specific initialization exists, call it.
310 * If not, call a CPU-specific one
311 */
312 if (board_eth_init != __def_eth_init) {
313 if (board_eth_init(bis) < 0)
314 printf("Board Net Initialization Failed\n");
315 } else if (cpu_eth_init != __def_eth_init) {
316 if (cpu_eth_init(bis) < 0)
317 printf("CPU Net Initialization Failed\n");
318 } else
319 printf("Net Initialization Skipped\n");
这段代码功能是:如果定义了单板相关的初始化函数就调用它,否则调用 CPU 相关的初始化函数。
其中__def_eth_init 函数,同样在ne 中定义
105 * CPU and board-specific Ethernet initializations. Aliased function
106 * signals caller to move on
107 */
108 static int __def_eth_init(bd_t *bis)
109 {
110 return -1;
111 }
112 int cpu_eth_init(bd_t *bis) __attribute__((weak, alias("__def_eth_init")));
113 int board_eth_init(bd_t *bis) __attribute__((weak, alias("__def_eth_init")));
这里用到了 gcc 的弱符号和别名属性。 如果我们没有定义自己的 board_eth_init 函数,则 board_eth_init 就和__def_eth_init 相同,调用 board_eth_init 就相当于调用__def_eth_init,现在就能明白上面的 if 判断语句了。
board_eth_init 在board/samsung/origen 中定义
264 #ifdef CONFIG_CMD_NET
265 int board_eth_init(bd_t *bis)
266 {
267
268 int rc = 0;
269 #ifdef CONFIG_DRIVER_DM9000
270 rc = dm9000_initialize(bis);
271 #endif
272 return rc;
273 }
274 #endif
这里通过配置宏来决定调用哪个网卡初始化函数。
我们使用的是 DM9000A,我们先查看下 DM9000A 的驱动源文件drivers/ne,初始化函数如下:
626 int dm9000_initialize(bd_t *bis)
627 {
628 struct eth_device *dev = &);
629
630 /* Load MAC address from EEPROM */
631 dm9000_get_enetaddr(dev);
632
633 dev->init = dm9000_init;
634 dev->halt = dm9000_halt;
635 dev->send = dm9000_send;
636 dev->recv = dm9000_rx;
637 sprintf(dev->name, "dm9000");
638
639 eth_register(dev);
640
641 return 0;
642 }
该函数就是 DM9000A 的初始化函数。 631行dm9000_get_enetaddr 从 EEPROM 加载MAC地址,
static void dm9000_get_enetaddr(struct eth_device *dev)
{
#if !defined(CONFIG_DM9000_NO_SROM)
int i;
for (i = 0; i < 3; i++)
dm9000_read_srom_word(i, dev->enetaddr + (2 * i));
#endif
}
该函数根据宏CONFIG_DM9000_NO_SROM 来决定是否从EEPROM 加载MAC地址, 参考的板子上的 DM9000A 没有接 EEPROM,我们在 origen.h 中定义了这个宏,表示不从 EEPROM 加载 MAC地址。
633~636行是将网卡的初始化和收发数据的函数填充到dev中,用于注册到系统中:
639行,函数eth_register()的参数是dev,该变量地址其实是dm9000_in的地址。 dm9000_info定义在同一文件下:
108 static board_info_t dm9000_info;
函数eth_register()位于ne中;
- 功能:用于注册网卡到系统中,如果之前网卡设备链表为空,则直接复制给全局指针变量eth_devices和eth_current ,如果不为空,则把当前网卡插入到链表eth_devices中。
int eth_register(struct eth_device *dev)
{
struct eth_device *d;
static int index;
assert(strlen(dev->name) < sizeof(dev->name));
if (!eth_devices) {//网卡设备链表为空
eth_current = eth_devices = dev;
eth_current_changed();
} else {//找到表尾
for (d = eth_devices; d->next != eth_devices; d = d->next)
;
d->next = dev;//插入表尾
}
dev->state = ETH_STATE_INIT;
dev->next = eth_devices;//新的设备指向网卡设备表头
dev->index = index++;
return 0;
}
其中
eth_devices:网卡设备的链表 eth_current: 用于保存当前使用的网卡
网卡注销 网卡注销函数eth_unregister() 该函数会将网卡节点dev从链表eth_devices中删除,并重新设置变量eth_current。
int eth_unregister(struct eth_device *dev)
{
struct eth_device *cur;
/* No device */
if (!eth_devices)
return -1;
for (cur = eth_devices; cur->next != eth_devices && cur->next != dev;
cur = cur->next)
;
/* Device not found */
if (cur->next != dev)
return -1;
cur->next = dev->next;
if (eth_devices == dev)
eth_devices = dev->next == eth_devices ? NULL : dev->next;
if (eth_current == dev) {
eth_current = eth_devices;
eth_current_changed();
}
return 0;
}
3. 寄存器
DM9000A 拥有一系列的控制和状态寄存器,这些寄存器可以被处理器所访问,这些寄存器是按字节对齐的。
所有的 CSRs 在软件或者硬件复位后都将被置为默认值,除非他们被另外标识。
编号 寄存器 描述 偏移地址 复位后默认值 1 NCR 网络控制寄存器 00H 00H 2 NSR 网络状态寄存器 01H 00H 3 TCR 发送控制寄存器 02H 00H 4 TSR I 发送状态寄存器 1 03H 00H 5 TSR II 发送状态寄存器 2 04H 00H 6 RCR 接收控制寄存器 05H 00H 7 RSR 接收状态寄存器 06H 00H 8 ROCR 接收溢出计数寄存器 07H 00H 9 BPTR 背压阈值寄存器 08H 37H 10 FCTR 流控制阈值寄存器 09H 38H 11 FCR TX/RX 流控制寄存器 0AH 00H 12 EPCR EEPROM&PHY 控制寄存器 0BH 00H 13 EPAR EEPROM&PHY 地址寄存器 0CH 40H 14 EPDRL EEPROM&PHY 低字节数据寄存器 0DH XXH 15 EPDRH EEPROM&PHY 高字节数据寄存器 0EH XXH 16 WCR 唤醒控制寄存器 0FH 00H 17 PAR 物理地址寄存器 10H~15H 由 EEPROM决定 18 MAR 广播地址寄存器 16H~1DH XXH 19 GPCR 通用目的控制寄存器(8bit 模式) 1EH 01H 20 GPR 通用目的寄存器 1FH XXH 21 TRPAL TX SRAM 读指针地址低字节 22H 00H 22 TRPAH TX SRAM 读指针地址高字节 23H 00H 23 RWPAL RX SRAM 写指针地址低字节 24H 00H 24 RWPAH RX SRAM 写指针地址高字节 25H 0CH 25 VID 厂家 ID 28H~29H 0A46H 26 PID 产品 ID 2AH~2BH 9000H 27 CHIPR 芯片版本 2CH 18H 28 TCR2 发送控制寄存器 2 2DH 00H 29 OCR 操作控制寄存器 2EH 00H 30 SMCR 特殊模式控制寄存器 2FH 00H 31 ETXCSR 即将发送控制/状态寄存器 30H 00H 32 TCSCR 发送校验和控制寄存器 31H 00H 33 RCSCSR 接收校验和控制状态寄存器 32H 00H 34 MRCMDX 内存数据预取读命令寄存器(地址不加 1) F0H XXH 35 MRCMDX1 内存数据读命令寄存器(地址不加 1) F1H XXH 36 MRCMD 内存数据读命令寄存器(地址加 1) F2H XXH 37 MRRL 内存数据读地址寄存器低字节 F4H 00H 38 MRRH 内存数据读地址寄存器高字节 F5H 00H 39 MWCMDX 内存数据写命令寄存器(地址不加 1) F6H XXH 40 MWCMD 内存数据写命令寄存器(地址加 1) F8H XXH 41 MWRL 内存数据写地址寄存器低字节 FAH 00H 42 MWRH 内存数据写地址寄存器高字节 FBH 00H 43 TXPLL TX 数据包长度低字节寄存器 FCH XXH 44 TXPLH TX 数据包长度高字节寄存器 FDH XXH 45 ISR 中断状态寄存器 FEH 00H 46 IMR 中断屏蔽寄存器 FFH 00H
关于默认值的要点(Key to Default) 在下面寄存器描述中,默认栏采用如下形式:
<Reset Value>, <Access Type>
其中
1 该位设为逻辑 1
0 该位设为逻辑 0
X 没有默认值
P 电源复位恢复默认值
H 硬件复位恢复默认值
S 软件复位恢复默认值
E 从 EEPROM 得到默认值
T 从捆绑引脚(strap pin)得到默认值
:
RO = 只读
RW = 可读可写
R/C = 可读/擦除
RW/C1=可读可写/通过写1擦除
WO = 只写
保留位被隐藏且应写 0,在读访问时保留位没有定义。
如何读取 DM9000A 的寄存器 RSR? 假设要读取 DM9000A 的寄存器 RSR(RX Status Register),需要分 2 步:
- 向 INDEX 端口写入 RSR 寄存器的地址(0x06) 条件: nGCS1 信号拉低、 Xm0WEn 信号拉低、 Xm0ADDR2 拉低, 或者说向下面的地址写数据 0x06
- 从 DATA 端口读取 RSR 寄存器的值 条件: nGCS1 信号拉低、 Xm0OEn 信号拉低、 Xm0ADDR2 拉高, 或者说从下面的地址读数据
DM9000A的寄存器很多,但是我们并需要都掌握,我们只需要掌握其中几个最重要的寄存器的使用即可。
- 网络控制寄存器(NCR)
- 网络状态寄存器(NSR)
在这里插入图片描述
ISR
DAVICOM 指定配置和状态寄存器(DSCSR)
4. 网卡的初始化
网卡的初始化函数入口位于文件ne下的函数eth_init():
404 int eth_init(bd_t *bis)
405 {
406 struct eth_device *old_current, *dev;
……
425 old_current = eth_current;
426 do {
427 debug("Trying %s\n", eth_current->name);
428
429 if (eth_current->init(eth_current, bis) >= 0) {
430 eth_current->state = ETH_STATE_ACTIVE;
431
432 return 0;
433 }
434 debug("FAIL\n");
……
440 }
429行即调用我们注册的dm9000A初始化函数,从这也可以看出,整个架构是把网卡的驱动独立分隔开,与硬件操作相关的代码由用户自己填充并注册到系统中即可,便于扩展。 进入dm9000_init():
290 static int dm9000_init(struct eth_device *dev, bd_t *bd)
291 {
292 int i, oft, lnk;
293 u8 io_mode;
294 struct board_info *db = &dm9000_info;
295
296 DM9000_DBG("%s\n", __func__);
297
298 /* RESET device */
299 dm9000_reset();
300
301 if (dm9000_probe() < 0)
302 return -1;
303
304 /* Auto-detect 8/16/32 bit mode, ISR Bit 6+7 indicate bus width */
305 io_mode = DM9000_ior(DM9000_ISR) >> 6;
306
307 switch (io_mode) {
308 case 0x0: /* 16-bit mode */
309 printf("DM9000: running in 16 bit mode\n");
310 db->outblk = dm9000_outblk_16bit;
311 db->inblk = dm9000_inblk_16bit;
312 db->rx_status = dm9000_rx_status_16bit;
313 break;
314 case 0x01: /* 32-bit mode */
315 printf("DM9000: running in 32 bit mode\n");
316 db->outblk = dm9000_outblk_32bit;
317 db->inblk = dm9000_inblk_32bit;
318 db->rx_status = dm9000_rx_status_32bit;
319 break;
320 case 0x02: /* 8 bit mode */
321 printf("DM9000: running in 8 bit mode\n");
322 db->outblk = dm9000_outblk_8bit;
323 db->inblk = dm9000_inblk_8bit;
324 db->rx_status = dm9000_rx_status_8bit;
325 break;
326 default:
327 /* Assume 8 bit mode, will probably not work anyway */
328 printf("DM9000: Undefined IO-mode:0x%x\n", io_mode);
329 db->outblk = dm9000_outblk_8bit;
330 db->inblk = dm9000_inblk_8bit;
331 db->rx_status = dm9000_rx_status_8bit;
332 break;
333 }
334
335 /* Program operating register, only internal phy supported */
336 DM9000_iow(DM9000_NCR, 0x0);
337 /* TX Polling clear */
338 DM9000_iow(DM9000_TCR, 0);
339 /* Less 3Kb, 200us */
340 DM9000_iow(DM9000_BPTR, BPTR_BPHW(3) | BPTR_JPT_600US);
341 /* Flow Control : High/Low Water */
342 DM9000_iow(DM9000_FCTR, FCTR_HWOT(3) | FCTR_LWOT(8));
343 /* SH FIXME: This looks strange! Flow Control */
344 DM9000_iow(DM9000_FCR, 0x0);
345 /* Special Mode */
346 DM9000_iow(DM9000_SMCR, 0);
347 /* clear TX status */
348 DM9000_iow(DM9000_NSR, NSR_WAKEST | NSR_TX2END | NSR_TX1END);
349 /* Clear interrupt status */
350 DM9000_iow(DM9000_ISR, ISR_ROOS | ISR_ROS | ISR_PTS | ISR_PRS);
351
352 printf("MAC: %pM\n", dev->enetaddr);
353
354 /* fill device MAC address registers */
355 for (i = 0, oft = DM9000_PAR; i < 6; i++, oft++)
356 DM9000_iow(oft, dev->enetaddr[i]);
357 for (i = 0, oft = 0x16; i < 8; i++, oft++)
358 DM9000_iow(oft, 0xff);
359
360 /* read back mac, just to be sure */
361 for (i = 0, oft = 0x10; i < 6; i++, oft++)
362 DM9000_DBG("%02x:", DM9000_ior(oft));
363 DM9000_DBG("\n");
364
365 /* Activate DM9000 */
366 /* RX enable */
367 DM9000_iow(DM9000_RCR, RCR_DIS_LONG | RCR_DIS_CRC | RCR_RXEN);
368 /* Enable TX/RX interrupt mask */
369 DM9000_iow(DM9000_IMR, IMR_PAR);
370
371 i = 0;
372 while (!(dm9000_phy_read(1) & 0x20)) { /* autonegation complete bit */
373 udelay(1000);
374 i++;
375 if (i == 10000) {
376 printf("could not establish link\n");
377 return 0;
378 }
379 }
380
381 /* see what we've got */
382 lnk = dm9000_phy_read(17) >> 12;
383 printf("operating at ");
384 switch (lnk) {
385 case 1:
386 printf("10M half duplex ");
387 break;
388 case 2:
389 printf("10M full duplex ");
390 break;
391 case 4:
392 printf("100M half duplex ");
393 break;
394 case 8:
395 printf("100M full duplex ");
396 break;
397 default:
398 printf("unknown: %d ", lnk);
399 break;
400 }
401 printf("mode\n");
402 return 0;
403 }
299行 函数DM9000_reset()是对dm9000A重置 301行 函数dm9000_probe()分别从寄存器VID、PID读取厂家ID、产品ID 305行 读取DM9000A的 ISR寄存器,根据bite[6:7]的值来决定最终从DM9000A中读取数位数,并将对应的函数设置到db->outblk和db->inblk这两个变量,最终上层服务想收发数据就通过这两个函数,对于16位模式,就分别赋值dm9000_outblk_16bit、dm9000_inblk_16bit; db->rx_status该函数用于从DM9000A中读取网卡的状态信息和数据包的长度,对于16位模式会赋值为dm9000_rx_status_16bit 336~350行 对DM9000A进行初始化配置 355~358行 将mac地址写入到DM9000A的PAR寄存器 367行 使能数据接收 369行 使能SRAM的读/写指针在指针地址超过SRAM的大小时自动跳回起始位置 382行 读取phy寄存器DSCSR,打印当前网口的带宽
通过读 bit[15:12]来看经过自动协商后选择的是哪一种模式。 网卡自动协商完成后,结果将被写到该位。若该位为 1,意味着操作 1 模式是 100M 全双工模式。
5. 数据的发送
发送流程
- 清中断,ISR寄存器bit[1] = 1
- 发送写操作,操作MWCMD
- 通过DM9000_DATA写入数据
- 设置数据帧的长度 TXPLL、TXPLH
- 发送发送请求,TCR
- 等待数据发送完毕,轮训检查NSR
- 清中断,ISR寄存器bit[1] = 1
网卡数据的发送函数是dm9000_send()
405 /*
406 Hardware start transmission.
407 Send a packet to media from the upper layer.
408 */
409 static int dm9000_send(struct eth_device *netdev, void *packet, int length)
410 {
411 int tmo;
412 struct board_info *db = &dm9000_info;
413
414 DM9000_DMP_PACKET(__func__ , packet, length);
415
416 DM9000_iow(DM9000_ISR, IMR_PTM); /* Clear Tx bit in ISR */
417
418 /* Move data to DM9000 TX RAM */
419 DM9000_outb(DM9000_MWCMD, DM9000_IO); /* Prepare for TX-data */
420
421 /* push the data to the TX-fifo */
422 (db->outblk)(packet, length);
423
424 /* Set TX length to DM9000 */
425 DM9000_iow(DM9000_TXPLL, length & 0xff);
426 DM9000_iow(DM9000_TXPLH, (length >> 8) & 0xff);
427
428 /* Issue TX polling command */
429 DM9000_iow(DM9000_TCR, TCR_TXREQ); /* Cleared after TX complete */
430
431 /* wait for end of transmission */
432 tmo = get_timer(0) + 5 * CONFIG_SYS_HZ;
433 while ( !(DM9000_ior(DM9000_NSR) & (NSR_TX1END | NSR_TX2END)) ||
434 !(DM9000_ior(DM9000_ISR) & IMR_PTM) ) {
435 if (get_timer(0) >= tmo) {
436 printf("transmission timeout\n");
437 break;
438 }
439 }
440 DM9000_iow(DM9000_ISR, IMR_PTM); /* Clear Tx bit in ISR */
441
442 DM9000_DBG("transmit done\n\n");
443 return 0;
444 }
该函数的参数
struct eth_device *netdev:设备
void *packet :发送数据包存放的内存的首地址
int length :发送的数据包长度
414行 打开debug开关,该行会打印发送的数据包 416行 使能数据包发送,将寄存器ISR的bit[1]设置为1 419行 通过寄存器MWCMD写入一个地址,并向该地址对应的 SRAM 中写数据。执行写该指令之后,写指针会根据操作模式(8 位或 16 位)自动增加 1 或 2。 422行 调用上一节db->outblk所赋值的函数将数据包发送的DM9000A的发送fifo中 425~426行 将发送数据包长度写入到寄存器TXPLL/TXPLH中,这两个寄存器分别对应低字节和高字节 429行 向寄存器TCR的bit[0]写入1,来请求发送数据,发送完毕该位自动清0 432~440行 通过向寄存器ISR的bit[1]写入1,来清楚发送标记位
其中发送函数dm9000_outblk_16bit() 定义如下:
159 static void dm9000_outblk_16bit(volatile void *data_ptr, int count)
160 {
161 int i;
162 u32 tmplen = (count + 1) / 2;
163
164 for (i = 0; i < tmplen; i++)
165 DM9000_outw(((u16 *) data_ptr)[i], DM9000_DATA);
166 }
164~165行 就是循环从地址DM9000_DATA读取数据并存储到data_ptr执行的内存中 此处我们看到每次都是从相同的地址读取数据,为什么不需要做地址偏移呢? 答:寄存器MWCMD已经和我们说的很清楚了,写该指令之后,指写指针根据操作模式(8 位或 16 位)增 加 1 或 2。
6. 数据的接收
DM9000A的数据接收
464 static int dm9000_rx(struct eth_device *netdev)
465 {
466 u8 rxbyte, *rdptr = (u8 *) NetRxPackets[0];
467 u16 RxStatus, RxLen = 0;
468 struct board_info *db = &dm9000_info;
469
470 /* Check packet ready or not, we must check
471 the ISR status first for DM9000A */
472 if (!(DM9000_ior(DM9000_ISR) & 0x01)) /* Rx-ISR bit must be set. */
473 return 0;
474
475 DM9000_iow(DM9000_ISR, 0x01); /* clear PR status latched in bit 0 */
476
477 /* There is _at least_ 1 package in the fifo, read them all */
478 for (;;) {
479 DM9000_ior(DM9000_MRCMDX); /* Dummy read */
480
481 /* Get most updated data,
482 only look at bits 0:1, See application notes DM9000 */
483 rxbyte = DM9000_inb(DM9000_DATA) & 0x03;
484
485 /* Status check: this byte must be 0 or 1 */
486 if (rxbyte > DM9000_PKT_RDY) {
487 DM9000_iow(DM9000_RCR, 0x00); /* Stop Device */
488 DM9000_iow(DM9000_ISR, 0x80); /* Stop INT request */
489 printf("DM9000 error: status check fail: 0x%x\n",
490 rxbyte);
491 return 0;
492 }
493
494 if (rxbyte != DM9000_PKT_RDY)
495 return 0; /* No packet received, ignore */
496
497 DM9000_DBG("receiving packet\n");
498
499 /* A packet ready now & Get status/length */
500 (db->rx_status)(&RxStatus, &RxLen);
501
502 DM9000_DBG("rx status: 0x%04x rx len: %d\n", RxStatus, RxLen);
503
504 /* Move data from DM9000 */
505 /* Read received packet from RX SRAM */
506 (db->inblk)(rdptr, RxLen);
507
508 if ((RxStatus & 0xbf00) || (RxLen < 0x40)
509 || (RxLen > DM9000_PKT_MAX)) {
510 if (RxStatus & 0x100) {
511 printf("rx fifo error\n");
512 }
513 if (RxStatus & 0x200) {
514 printf("rx crc error\n");
515 }
516 if (RxStatus & 0x8000) {
517 printf("rx length error\n");
518 }
519 if (RxLen > DM9000_PKT_MAX) {
520 printf("rx length too big\n");
521 dm9000_reset();
522 }
523 } else {
524 DM9000_DMP_PACKET(__func__ , rdptr, RxLen);
525
526 DM9000_DBG("passing packet to upper layer\n");
527 NetReceive(NetRxPackets[0], RxLen);
528 }
529 }
530 return 0;
531 }
472行 DM9000A的寄存器ISR的bit[0]必须设置为1,否则无法接收数据 475行 将ISR的bit[0]设置为1 479行 读取寄存器MRCMDX, 以从接收 SRAM 中读数据;执行读取该指令之后,指向内部 SRAM的读指针不变。DM9000A 开始预取 SRAM 中数据到内部数据缓冲中 483~494行 从地址DM9000_DATA中读取数据,从SRAM中读取的第一个数据的bit[0]必须是1,否则出错 500行 通过函数指针db->rx_status读取网卡的状态和接收到的数据包的长度 506行 通过函数指针db->inblk从网卡中读取数据 527行 通过函数NetReceive()提交给上层协议栈
真正读取数据的函数是dm9000_inblk_16bit(); 定义如下:
static void dm9000_inblk_16bit(void *data_ptr, int count)
{
int i;
u32 tmplen = (count + 1) / 2;
for (i = 0; i < tmplen; i++)
((u16 *) data_ptr)[i] = DM9000_inw(DM9000_DATA);
}
原理类似于函数dm9000_outblk_16bit,不再重复。
由此可见,要分析DM9000A的数据收发的原理和流程,就要分析我们注册网卡的以下几个函数:
635 dev->send = dm9000_send;
636 dev->recv = dm9000_rx;
310 db->outblk = dm9000_outblk_16bit;
311 db->inblk = dm9000_inblk_16bit;
1.《【25ND9000总线怎么退出】网卡DM9000裸机驱动器开发详细信息》援引自互联网,旨在传递更多网络信息知识,仅代表作者本人观点,与本网站无关,侵删请联系页脚下方联系方式。
2.《【25ND9000总线怎么退出】网卡DM9000裸机驱动器开发详细信息》仅供读者参考,本网站未对该内容进行证实,对其原创性、真实性、完整性、及时性不作任何保证。
3.文章转载时请保留本站内容来源地址,https://www.lu-xu.com/why/3060268.html