量子光学是很多国家重点研究的方向,马上要到春节了,今天光电资讯为大家整理了一些关于量子光学研究和发展的盘点内容,请大家看看。
“中国造”光量子计算机诞生
进步指数:★★★★★
计算机作为20世纪最伟大的发明之一,随着摩尔定律迈向终结,性能提升面临瓶颈。后摩尔定律时代,我们又要通过什么途径提高运算速度呢?答案是量子计算。量子计算机具有强大的计算能力,可以解决传统计算机难以或者不能解决的问题。
科技界迎来了一则重磅消息:世界上第一台超越早期经典计算机的光量子计算机诞生。中国科学院5月3日在上海举行新闻发布会,对外发布了这一消息,这个“世界首台”是货真价实的“中国造”,属中国科学技术大学潘建伟教授及其同事陆朝阳、朱晓波等,联合浙江大学王浩华教授研究组攻关突破的成果。
量子计算机是指利用量子相干叠加原理,理论上具有超快的并行计算和模拟能力的计算机。研究团队还实现了目前世界上最大数目超导量子比特的纠缠,并在超导量子处理器上实现了快速求解线性方程组的量子算法。
据介绍,潘建伟、陆朝阳等利用自主发展的综合性能国际最优的量子点单光子源,并通过电控可编程的光量子线路,构建了针对多光子“玻色取样”任务的光量子计算原型机。
实验测试表明,该原型机的取样速度比国际同行类似的实验加快至少24000倍,同时,通过和经典算法比较,也比人类历史上第一台电子管计算机(ENIAC)和第一台晶体管计算机(TRADIC)运行速度快10-100倍。
潘建伟称,这是历史上第一台超越早期经典计算机的基于单光子的量子模拟机,为最终实现超越经典计算能力的量子计算奠定了基础。
量子计算机的诞生
量子计算机的诞生,是摩尔定律发展到一定阶段的结果,也与物理学家们提出的设想有关。
摩尔定律的技术基础是不断提高电子芯片的集成度(单位芯片的晶体管数)。集成度不断提高,速度就不断加快,我们的手机、电脑就能不断更新换代。
但在物理学家们看来,摩尔定律的技术基础,天然地受到两个主要物理限制。
一是随着单位芯片上晶体管数越来越多,运行时计算机温度必然迅速上升,必须消耗大量能量来散热,否则芯片将被烧坏。
二是为了提高集成度,晶体管越做越小,当小到只有一个电子时,量子效应就会出现。电子将不再受欧姆定律管辖,由于它有隧道效应,本来无法穿过的壁垒也穿过去了,所以量子效应会阻碍信息技术继续按照摩尔定律发展。
这两个限制就是物理学家们预言摩尔定律会终结的理由所在。而这就提出了一个问题:在后摩尔时代,提高运算速度的途径是什么?答案是量子计算。
量子计算机成长史
史蒂芬·威斯纳在1969年最早提出“基于量子力学的计算设备”。1980年代一系列的研究使得量子计算机的理论变得丰富起来。在1981年五月的MIT物理学和计算机技术的一次会议上,1918年出生的美国物理学家理查德·费曼,作了一个“Simulating Physics With Computers”的报告,揭开了研究发展量子计算机的新篇章。
大事记
1982年,诺贝尔奖获得者理查德·费曼提出“量子计算机”的概念。
1994年,贝尔实验室的彼得·秀尔证明量子计算机能够完成对数运算,且速度远胜传统计算机。
1997年,科学家首次用一对纠缠光子实现了量子信息传输。
2005年,世界第一台量子计算机原型机在美国诞生,基本符合了量子力学的全部本质特性。
2007年2月,加拿大D-Wave系统公司宣布研制成功16位量子比特的超导量子计算机。
2007年,维也纳大学的安东·齐林格和他的同事们用一对纠缠光子在加那利群岛的两个岛之间传输了一份量子信息,传送距离超过了143千米。
2009年11月15日,世界首台可编程的通用量子计算机正式在美国诞生。不过根据初步的测试程序显示,该计算机还存在部分难题需要进一步解决和改善。
2010年1月,美国哈佛大学和澳洲昆士兰大学的科学家利用量子计算机准确算出了氢分子所含的能量。
2010年3月,德国于利希研究中心发表公报:该中心的超级计算机JUGENE成功模拟了42位的量子计算机。
2012年3月,IBM做到了在减少基本运算误差的同时,保持量子比特的量子机械特性完整性。
2013年5月,德国马克斯普朗克量子光学研究所的科学家格哈德·瑞普领导的科研小组,首次成功地实现了用单原子存储量子信息——将单个光子的量子状态写入一个铷原子中,经过180微秒后将其读出。最新突破有望助力科学家设计出功能强大的量子计算机,并让其远距离联网构建“量子网络”。
2013年6月8日,由中国科学技术大学潘建伟院士领衔的量子光学和量子信息团队的陆朝阳、刘乃乐研究小组,在国际上首次成功实现了用量子计算机求解线性方程组的实验。
2014年1月3日,美国国家安全局(NSA)正在研发一款用于破解加密技术的量子计算机,希望破解几乎所有类型的加密技术。
2015年12月,以杜教授为首的中国科技大学研究人员小组建立了一个新的系统,这个系统可以使用相应的方式退出体系结构。其量子计算能够在普通室温的条件下工作,这是借助于金刚石中少量的氮来完成的,金刚石建成世界上首台量子计算机。
2016年8月最新一期的物理领域重要期刊《自然·光子学》在线发表的一个重要成果:中科院量子信息重点实验室李传锋教授研究组研制出一种全新的量子计算机——非局域性量子模拟器。
首次实现反事实直接量子通信
进步指数:★★★★★
中国科学技术大学潘建伟教授及其同事彭承志、陈宇翱等和清华大学马雄峰合作,在国际上首次实验实现了反事实直接量子通信,在实验中演示了图像的反事实传输,相关成果最近以 "Direct counterfactual communication via quantum Zeno effect" 为题,发表在国际权威学术期刊《美国科学院院报》上 [PNAS 114, 4920 (2017)]。
以日常生活的经验,任何信息的传输都需要通过实物载体,如信件、电磁波等。然而,国际著名量子光学专家M. Suhail Zubairy小组2013年提出的反事实直接量子通信方案 [Phys. Rev. Lett. 110, 170502 (2013)] 表明,即使在通信双方Alice 和 Bob之间没有实物粒子的交换,也可以实现信息的传递。这里“反”的就是人们日常生活中形成的直观认识。
反事实直接量子通信,本质上是光的“波粒二象性”的集中体现。该方案最初的灵感来自于1993年提出的“炸弹测试模型”。如图1所示,在干涉仪的下臂中可能放有一个非常敏感的炸弹,即使只有一个光子遇到它,也会被其吸收并引发爆炸。为了探测炸弹是否存在,可以从A端向干涉仪中发射一个光子。如果炸弹不存在,由于干涉,光子将一定从端口C离开;如果炸弹存在,则光子要么通过下臂被炸弹吸收,要么通过上臂,并以相同的概率从端口C或D离开。因此综合来看,如果最终在端口D探测到一个光子,那么炸弹一定存在于干涉仪中。值得注意的是,这里我们只发射了一个光子,如果这个光子在端口D被探测到,那么它一定没有通过干涉仪的下臂,然而我们却得到了炸弹存在的信息。这在后来被称为“无相互作用测量(interaction-free measurement)”。在此基础上,再利用量子芝诺效应(quantum Zeno effect),可以大大提升上述无相互作用测量的成功率。
图 1无相互作用测量示意图
具体到反事实直接量子通信的物理实现,最核心的结构是嵌套、级联的干涉仪。Bob 根据他需要传输的信息来编码,通过嵌套的量子芝诺效应,Alice 可以利用类似于“无相互作用测量”的方式完整地获知 Bob 的信息,并且在这个过程中没有任何光子在 Alice 和 Bob 之间传输。Zubairy 等人的原始方案要求有无穷多个干涉仪,这显然是不可能实现的。潘建伟团队通过对原始方案的仔细分析和改进,使得反事实直接量子通信得以实现。一方面,通过使用可预报单光子源和后选择,在较少的干涉仪数目下也可以得到完全的反事实性;另一方面,用被动筛选光子到达时间的策略替代原方案中的高速主动光开关等。整个实验装置如图2所示。研究团队实现了技术突破,使用先进的相位稳定技术,首次实现了复杂的嵌套、级联的单光子干涉仪,并成功传输了一张 100×100 像素的中国结图片,传输正确率达到了 87%,如图3所示。该方案还可以进一步发展,用于无相互作用成像等领域。
这项工作是量子通信领域的全新尝试。自最初的理论工作提出以来,在对其内在机理的解释方面引起了学术界不小的争论。然而正是这样的争论,推进了人们对其本质的探索,使得人们有机会更深入理解量子力学。该工作被《美国科学院院报》审稿人评论为 "是一个将量子芝诺效应用于通信的新奇实现 (a novel realization of an application of the quantum Zeno effect to communication)" 以及 "非常有趣且及时 (very interesting and timely)"。该工作受到了英国物理学会网站Physics World、《科学美国人》、物理学家组织网(Phys.Org.)等国际权威媒体的专题报道。上述研究得到了国家自然科学基金、科技部、教育部和中国科学院的支持。
图 2 实验装置
图 3 100×100 像素中国结图片的传输结果
量子芝诺效应
提到量子芝诺效应,就要从古希腊著名的哲学家和数学家芝诺(Zeno)说起。他一生中提出过许多关于运动的不可分性的哲学悖论,其中最为著名的一个便是“飞矢不动”悖论。这个悖论是说,一支在空中飞行的箭,其实是不动的。因为箭在每一个瞬间的时刻都应该是静置的,那么无数个静置的组合还应该是静置。这个结论在经典世界里显然是不成立的,是逻辑上的悖论。芝诺的这个悖论在经典力学框架里似乎是荒谬的,但在量子力学里,它是可能的。为了纪念这位古希腊哲学家,在微观量子体系中,我们把该效应称为“量子芝诺效应”。有一个很形象但并不完全准确的例子来比喻“量子芝诺效应”:一个人准备睡觉,如果旁边另一个人不断询问其是否睡着了,那么可以想象,准备睡觉的人便总也睡不着了。这其实是在形容如果一个物理系统被连续不断的观测,那么它将不再继续演化。
回答爱因斯坦“百年之问”
进步指数:★★★★★
就像是一个隐喻,来自中国的“墨子号”量子卫星从太空发出两道红色的光,看上去像极了汉字里大写的“人”字,这幅景象被当作“封面”,刊印在6月17日的美国知名学术期刊杂志《科学》上。这一次中国科学站到了世界面前,而且是挺直腰杆,站在了最前沿。
6月16日,中国量子科学实验卫星首席科学家、中国科学技术大学副校长潘建伟院士在媒体的闪光灯下宣布:中国率先实现了“千公里级”的星地双向量子纠缠分发,打破了此前国际上保持多年的“百公里级”纪录,回答了爱因斯坦关于量子力学的“百年之问”。
赞誉、解读、报道纷至沓来——
《科学》杂志审稿人称该成果是“兼具潜在实际现实应用和基础科学研究重要性的重大技术突破”,并断言“毫无疑问将在学术界和广大的社会公众中产生非常巨大影响”。
美国波士顿大学量子技术专家谢尔吉延科评价:这是一个英雄史诗般的实验,中国研究人员的技巧、坚持和对科学的奉献应该得到最高的赞美与承认。
在中科院新闻发布当天,潘建伟没有刻意掩饰自己的激动,他说:“这是我这辈子目前为止,做过的最好的科学成果。”
尽管对他和他的团队来说,所谓领跑,或是创造世界纪录,早已是家常便饭——
就在一个月前,潘建伟团队研发的世界上第一台超越早期经典计算机的光量子计算机问世。再往前,2003年,潘建伟团队实现了四光子纠缠态——一个量子纠缠研究领域基础性工作,此后多年,该团队又先后实现五光子、六光子、八光子、十光子纠缠,一直保持着多光子纠缠的世界纪录,并频频引来学界和媒体的关注。
英国《自然》杂志在报道潘建伟团队量子通信研究成果时就提到:这标志着中国在量子通信领域的崛起,从10年前不起眼的国家发展为现在的世界劲旅,将领先于欧洲和北美。
如今,以量子卫星最新实验为代表的成果,让中国再次挺进量子研究世界版图的中心。属于中国的量子时间似乎正在到来。
“世纪之问”:全球大国新博弈
人类之所以爱上科学,很大程度上在于它能够探索未知,满足我们的好奇心。如今,一个不难描述的未知问题摆在人类面前——
在人类肉眼看不到的微观世界中,事物究竟是以“概率”而存在的,还是“确定”存在的?举个关于足球的例子,在宏观世界,我们可以确定地知道它究竟在哪个点,但在微观世界,一个足球就相当于一个粒子,人们似乎只能判断它出现在足球场某个点的概率,却无法确切地知道它究竟在哪里。
量子力学正是微观世界“概率论”的最大支持者。量子论里有一种特性,即量子纠缠,简单来说,两个处于纠缠状态的量子,就像有“心灵感应”,无论这些粒子之间相隔多远,只要一个粒子发生变化,另外的粒子也会即刻“感知”,随之发生变化。
不过,爱因斯坦并不买账,并讥讽这个现象为“幽灵般的超距作用”。也因此,他和波尔等科学巨擘为此展开激烈争论,并留下一个“世纪年之问”:上帝掷骰子吗?换言之,微观世界都是由“概率”决定存在的吗?
全球相关领域的科学家,甚至是一些执政者都为这个问题着迷。因为,一旦这种特性得到最终验证,就有一个最为直接的应用,即通过量子纠缠所建立起来的量子信道不可破译,成为未来保密通信的“终极武器”。
按照潘建伟的说法,要让量子通信实用化,需要实现量子纠缠的“远距离”分发。一代又一代学者接力走下来,人类似乎遭遇了“瓶颈”:由于量子纠缠“太脆弱”,会随着光子在光纤内或地表大气中的传输距离而衰减,以往的实验只停留在“百公里”量级的距离。
潘建伟粗略地测算过,使用光纤进行量子分发,传输“百公里”距离,损耗已达99%;传输“千公里”的距离,每送1个光子大约需要3万年,“这就完全丧失了通信的意义”。
于是,一场大国间的“量子通信”竞赛就此出现,谁先冲到“千公里”的距离,似乎就能在这场赛跑中领先。潘建伟说:“大家不断地去‘拉长’这个距离,以此来验证量子纠缠的原理,步步逼近量子通信的实用目标。”
“弯道超车”:中国在太空领跑
事实上,在量子物理学诞生的一百多年里,有关研究始终长盛不衰。但是,在只争朝夕的国际科研竞争前几十年,一直难见到中国人的身影。起步晚,是中国人甩不掉的标签,但这并不妨碍我们“弯道超车”。
2003年,潘建伟团队开始实验“长距离”量子纠缠,从13公里到100公里,从追赶走向超越。2012年8月9日,国际学术期刊《自然》杂志以封面标题形式发表了潘建伟团队的研究成果:他们在国际上首次成功实现了“百公里”量级的自由空间量子隐形传态和纠缠分发。
这一成果不仅刷新世界纪录,有望成为远距离量子通信的里程碑,而且为发射全球首颗量子科学实验卫星即如今的“墨子号”奠定了技术基础。同年12月6日,《自然》杂志为该成果专门撰写了长篇新闻特稿《数据隐形传输:量子太空竞赛》,详细报道了这场激烈的量子太空竞赛。
又过了4年,潘建伟团队通过发射“墨子号”卫星,将“量子纠缠”的实验距离拉到“1200公里”,把科学家一直假想的实验变成了现实,也让中国量子在太空中领跑全球。
加拿大滑铁卢大学量子技术专家延内魏因说,国际上确实存在量子科研竞赛。“中国团队已克服了好几个重大技术与科学挑战,清楚地表明了他们在量子通信领域处于世界领先地位。”
相应地,类似的实验,欧盟、加拿大、日本都有科学家在呼吁和推进。但或因技术积累不够,或因资金支持不够,目前进展缓慢。
以美国为例,2015年美国航空航天局宣布一项计划:在其总部与喷气推进实验室之间建立一个直线距离600千米、光纤皮长1000千米左右、10个中转基站的远距离光纤量子通信干线,并计划拓展到星地量子通信。不过,目前该计划尚未有实际进展的最新消息。
2015年年末,英国政府发布的《量子时代的技术机遇》报告显示,中国在量子科技的论文发表上排在全球第一、专利应用排名第二。在“第二次量子革命”的起步阶段,中国异军突起进入“领跑阵营”。
如今,在最新量子太空竞赛中,中国“墨子号”再次独占鳌头,第一个冲过“千公里”量级的跑线。参与这次实验的两个地面站分别是青海德令哈站和云南丽江高美古站,两站距离1203公里。有评论称,发射后仅仅数月,世界上首颗量子通信卫星就已经达到了它最具雄心的目标之一,量子通信向实用迈出一大步。
异军突起:体制机制做后盾
潘建伟不止一次地被问到:中国这一次为何得以领先欧美国家?
而他的回答,往往是“集中力量办大事”,有赖于中国“大科学”项目建设的高效性。
潘建伟说,这项成果是由一个“大团队”做出的。在中国科学院空间科学战略性先导科技专项的支持下,他和他的同事彭承志等组成的研究团队,联合中国科学院上海技术物理研究所王建宇研究组、微小卫星创新研究院、光电技术研究所、国家天文台、紫金山天文台、国家空间科学中心等单位合作完成。
如此列举,并非只是在“功劳簿”上写上一笔。
潘建伟说,一切进展顺利时,大家也许意识不到,但一旦遇到磕磕碰碰,就能深切地意识到“某些环节或某个机构的不可或缺性”。他的一些欧洲、美国、加拿大同行,也曾有过类似的科学设想,但没有类似团队的全力支持,只能作罢。
比如,量子信息实验研究的先驱者、著名物理学家Anton Zeilinger 研究组以及欧洲众多的优秀研究团队一直在与欧洲空间局商讨建立以国际空间站为平台的星地量子通信计划。然而,欧空局缓慢的决策机制使得这一计划一再拖延。
而在我国,早在2003年,潘建伟就向中科院提出利用卫星实现远距离量子纠缠分发的方案。在当时的中科院内部,这个“闻所未闻的想法”并非没有收到质疑的声音,甚至有人说,“潘建伟疯了”!
不过,中科院最终咬牙批给了潘建伟团队100多万元——这在14年前可是一笔“相当大”的科研经费。
那时,有一个叫彭承志的,还是一头黑发的年轻小伙,如今却已是头发花白的量子卫星科学应用系统总师、中国科学技术大学的教授,也是这次“千公里”量级重要成果的主要完成人之一。
据他回忆,2003年,潘建伟找到还是博士生的他,向他描述量子通信的前景。他问潘建伟:“这个事,是不是挺牛的?”
潘建伟说:“是世界上最牛的,至少是之一”。
“作为一个年轻人能够做这样一件事情,我没有理由拒绝。”彭承志说。
按照潘建伟的说法,他从中国科大的研究起步,把人才布局辐射奥地利因斯布鲁克、英国剑桥、德国马普量子光学所……2008年,他带领在德国的团队整体回归中国科大,分布在世界各地的年轻学者也陆续回国,一支由他领衔、以陈宇翱、陆朝阳、张强、赵博等为代表的世界级研究团队“横空出世”。
如今,14年过去,“千公里”量级的关卡闯了过去,这支团队正朝着“30万公里”的终极距离去努力,继续检验量子力学。未来,还有可能和探月工程结合,到月球上做实验。
不过,潘建伟这位年仅47的院士仍有着“严重的危机感”。他说,没做成的时候有很多怀疑,现在花了这么多时间做成了,国际上都纷纷表示要“尽可能赶上”。
正如一位美国同行所说,虽然第一艘宇航飞船和第一个人造卫星都是苏联做出来的,但登月,美国却是第一个。他们觉得只要努力,就可以在量子领域赶超中国。
“所以,我们不敢懈怠。”潘建伟说。
推动多维量子信息科学
进步指数:★★★★
与领先的企业合作,对昂贵和复杂的量子基础设施进行投资和研究,释放了量子技术的力量,制造者已经取得了突破性的进展,实现了一个轻量级的光子系统,且这一系统是利用片上设备和现成的电信组件组成。在最新发表在《自然》杂志上一篇论文中该研究团队表明,光子在色彩纠缠形态时可以成为方便且强大的量子资源。
这种系统采用了一种体积小、成本高的光子芯片,其工艺类似于集成电子器件。利用激光激发的片上微环谐振腔,光子成对发射,并共用一个复杂的量子态。光子是以具有叠加频率成分的状态来构造的,即这种光子同时具有多种颜色,而每一个光子的颜色都是相互联系的(纠缠的),且不管它们分离的距离有多少,这种状态始终存在。
每个频率或颜色代表一个维度,光子在片上可作为一种高维量子态(qudit)产生。到目前为止,量子信息科学主要集中在量子比特的开发上,基于两个状态被叠加的二维系统(例如,0和1状态同时存在,这与经典的比特相反,后者在任何时候都是0或1的一种)。工作在频域内允许叠加更多的状态(例如,高维光子可以是红色、黄色、绿色和蓝色,虽然这里所用的光子是用于电信兼容性的红外线),从而增强了单个光子中的信息量。
迄今为止,Roberto Morandotti教授,他领导了加拿大魁北克大学国立科学研究院的这一个研究小组,证实了使用这种方法的至少具有一百个维度的量子系统的实现,并且随着技术的开发,很容易扩展到创建超过9000个维度的多能级系统(要好于12量子比特系统,比肩于那些更明显昂贵和复杂的平台)。
这种量子态的频率域的使用使得它们在光纤系统中易于传输和操作。“通过合并量子光学与超快光学加工领域,我们已经表明,这些高维的操作确实有可能使用标准的电信元件如调制器和高频滤波器实现,”电信系统专家教授JoseAZAn表示说,他还是这一研究的共同合作者。
为止,电信部门已开发了通信的相关模块的技术,并旨在用于操纵传统信号。本研究是一个改变游戏规则的进步:进展可以立即转移到量子科学将直接用于高维量子态特性的基础研究,如基于光纤应用的量子通信,未来的频域发展,高维量子逻辑门和其他应用程序中。
资深作者Michael Kues和Christian Reimer注意到,演示平台的亮点是其可达性:它很容易利用标准通信系统的组件就可以建立这种系统,原材料在市面上到处都是。因此,在短期内,世界各地的研究人员将能够将这项技术纳入并推动这一技术的飞跃,从而推动实际量子应用的发展。
量子光学集成芯片取得进展
进步指数:★★★★★
在中国科学院B类战略性先导科技专项“大规模光子集成芯片”支持下,西安光机所与国外多家科研机构合作,利用西光研制的光子芯片,基于微谐振腔中多个高纯度频率模式相干叠加的独特方案,解决了片上高维纠缠双光子态制备与控制的国际难题,证实了利用10级纠缠双光子态实现超100维的片上量子系统,并通过频率操控实现了对量子态的灵活控制。相关成果于2017年6月发表在国际著名期刊Nature上。
基于纠缠光子的光量子系统是解决现代量子物理和量子信息科学中诸多问题的核心基础。随着量子信息研究的深入,除多光子纠缠外,高维量子态(qudit)因其携载信息能力远高于量子比特(qubit)的优势,引起了人们广泛关注,已成为量子机理深层次研究、提升量子通信协议鲁棒性与速率、以及实现更高效量子计算等的关键手段。
高维量子态产生和控制实验装置
实现量子信息处理的发射器
进步指数:★★★★★
科学家已经研发出能够在室温和通信波长下实现单光子发射的碳纳米管量子发光体。这些发射器可用于处理光学量子信息和信息安全,以及感测、计量和成像等。
该项目成功的关键点是能够迫使纳米管沿着管的单个点发出光,尤其是在缺陷部位。关键是将缺陷能级限制在每个管一个缺陷能级,以便每次只能发射一个光子。为了达到如此高的控制度,研究人员利用重氮基化学法将有机分子与纳米管的表面结合,作为缺陷部位。重氮反应能够控制引入苯类缺陷,降低对周围环境中自然波动的敏感性。重氮基化学法还允许研究人员获得纳米管发射波长的固有可调性。
来自美国新墨西哥州洛萨拉摩斯国家实验室的研究人员认为,已经生成了通过使用化学功能化的碳纳米管,在室温和通信波长下能够实现单光子发射的首个材料。这些量子光发射器对于基于光学的量子信息处理和信息安全、超灵敏感测、计量学和成像需求以及量子光学研究的光子源十分重要。
在此次实验中,在单壁碳纳米管中共价引入缺陷位点的激子局域化提供了一种具有超高单光子纯度(99%)的室温单光子发射和增强的接近抛物线噪声极限的发射稳定性的途径。
研究人员进一步表明,存在于其结构多样性中的单壁碳纳米管的固有光学可调性促进了跨越整个通信频段的室温单光子发射的产生。在研究中使用的最大纳米管直径(0.936nm),实现了深入通信C频带(1.55μm)中心的单光子发射。
大多数通过其他量子发射方法产生的波长对于通信应用来说太短了。通过选择适当直径的纳米管,该研究团队能够将单个光子发射调谐到适当的通信波长区域。
美国新墨西哥州洛萨拉摩斯国家实验室项目负责人Stephen Doorn表示:“理想情况下,单个光子发射器能提供室温运行和通信波长的发射,但这仍然是一个难以实现的目标。到目前为止,可以在这些波长中作为单光子发射体的材料必须被冷却到液氦温度,因此它们不太适用于最大限度运用或其他科研目的。
功能化碳纳米管具有进一步发展的前景,包括官能化化学的进步;整合到光子、等离子体激元和超材料结构中,以进一步控制量子发射特性;实现安装到不同应用的电动器件和光学电路中。
该研究已经发表在了《自然光子学》杂志中。
在最后,跟大家报告一个好消息!
2018年1月10日,在美国犹他州举行的量子电子物理学大会上,中国科学技术大学常务副校长、量子通信专家潘建伟被授予国际激光科学和量子光学领域的大奖:兰姆奖(Willis E. Lamb Award),以表彰他在光量子信息前沿领域的开创性实验研究。
另外两位得主分别是德国汉诺威大学的Ernst Rasel,获奖理由是首次在微重力中实现玻色-爱因斯坦凝聚;奥地利因斯布鲁克大学的Peter Zoller,获奖理由是对量子计算、量子通信和多体物理的开创性贡献。
以上就是跟大家带来的量子光学研究年终盘点!您对此有什么看法呢?可以在后面跟我们留言哦。
光电互动:您觉得上面哪项研究很给力?
1.《光学研究年终盘点|一个比一个给力!量子光学新成果简直强爆了》援引自互联网,旨在传递更多网络信息知识,仅代表作者本人观点,与本网站无关,侵删请联系页脚下方联系方式。
2.《光学研究年终盘点|一个比一个给力!量子光学新成果简直强爆了》仅供读者参考,本网站未对该内容进行证实,对其原创性、真实性、完整性、及时性不作任何保证。
3.文章转载时请保留本站内容来源地址,https://www.lu-xu.com/guonei/18438.html