点击上方“浦发银行金融市场业务”关注我们

来,我们一起回顾下久期的概念吧。

久期(duration)的概念最早是麦考利(Macaulay)在1938年提出来的,所以又称麦考利久期(Macaulay duration)。

接着说正事。

简单地说,久期是对债券平均有效期的测度,用于衡量债券利率敏感度的指标。

概念比较晦涩,我们举个例子吧。

假设你养了一只母鸡。

够迅速啊~

你每天给母鸡喂米,

而母鸡生鸡蛋给你吃,约定一周生3个蛋。

如果:

母鸡第1天生了个蛋,你煮荷包蛋吃了。

母鸡第2天又生了个蛋,你烧茶叶蛋吃了。

母鸡第3天、第4天没生蛋,

第5天终于再次生了个蛋,你做番茄炒蛋吃了。

不多!

不要打岔,注意听题!

问:母鸡生蛋给你吃的有效时间是多久?

你再想想看,这个指标有问题不?

假设我们换一种情况,母鸡第1-4天都没生蛋,第5天生3个蛋。

按照你刚才的算法,这种情况下,母鸡生蛋的有效时间是不是也是5天?

但在第一种情况下,你在第1天和第2天就吃到了鸡蛋,而第二种情况你必须等到第5天。

所以我们创造一个指标,叫做“生蛋久期”。

t为每次生蛋的期限,则生蛋久期D=∑t。

在第一种情况下,

生蛋久期D=1天+2天+5天=8天。

在第二种情况下,

生蛋久期D=5天+5天+5天=15天。

15天>8天,所以第一种情况给你带来的效用会高些。

哦,有点近似了,

但还有一个要素没有考虑到。

母鸡生的蛋是有大小的,带给你的效用是不一样的。

我们必须加入权重,

以此考虑蛋的重量大小问题。

所以,

第1天蛋的重量权重为a/(a+b+c);

第2天蛋的重量权重为b/(a+b+c);

第5天蛋的重量权重为c/(a+b+c)。

生蛋久期D=∑(t×)

=1×(a/(a+b+c))+2×(b/(a+b+c))+5×(c/(a+b+c))

我们将生蛋过程想象为债券产生现金流(CF)过程:

假设一张T年期债券,

t 时刻的现金流为(1≤t≤T),

债券价格P=∑,

则债券麦考林久期D=∑(t×)=t1×CF1/∑CFt+t2×CF2/∑CFt+…+tn×CFn/∑CFt

=∑( t×CFt / ∑CFt)

哦,但还有一个要素没有考虑到。

Sorry。我们说过货币是有时间价值的,在算CF现金流的时候,我们还需要考虑收益率r。

因而,麦考利久期完整公式如下:

一般来说,久期和债券的收益率成反比。

债券的久期D越大,利率的变化对该债券价格P的影响也越大,因此风险也越大。

D和P关系有如下公式:

对债券价格P以r一阶求导即可得到该公式。

我们就不展开说了。

最后我们看下麦考利久期的概念,

结束今天的话题:

麦考利久期是债券在未来产生现金流的时间的加权平均,其权重是各期现值在债券价格中所占的比重。

(本文来源于微信公众号三折人生)

长按下方二维码关注我们:

1.《图说|从“母鸡下蛋”说麦考利久期是个啥?》援引自互联网,旨在传递更多网络信息知识,仅代表作者本人观点,与本网站无关,侵删请联系页脚下方联系方式。

2.《图说|从“母鸡下蛋”说麦考利久期是个啥?》仅供读者参考,本网站未对该内容进行证实,对其原创性、真实性、完整性、及时性不作任何保证。

3.文章转载时请保留本站内容来源地址,https://www.lu-xu.com/jiaoyu/2092.html